Hostname: page-component-78c5997874-94fs2 Total loading time: 0 Render date: 2024-11-20T06:18:34.282Z Has data issue: false hasContentIssue false

The oxidative transformation of solid, barium-metal-bearing precursors into monolithic celsian with a retention of shape, dimensions, and relative density

Published online by Cambridge University Press:  31 January 2011

Seyed M. Allameh
Affiliation:
Department of Materials Science and Engineering, The Ohio State University, Columbus, Ohio 43210
Kenneth H. Sandhage
Affiliation:
Department of Materials Science and Engineering, The Ohio State University, Columbus, Ohio 43210
Get access

Abstract

The conversion of Ba–Al2O3 –Si–SiO2, Ba–Al–Al2O3 –SiO2, and Ba–Sr–Al–Al2O3 –SiO2 precursors into monolithic, monoclinic celsian has been examined. The relative amounts of metal and oxide in each type of precursor were adjusted so that the overall stoichiometry and molar volume were similar to those of the desired product, celsian. Metal + oxide mixtures were mechanically alloyed and then uniaxially pressed to yield 84–92% dense precursor disks. The precursors were converted into celsian by exposure to a series of heat treatments from 300–1500 °C in oxygen-bearing gases. Differences and similarities in the phase evolution of the various precursors are discussed. Celsian disks were produced that retained the precursor shape, dimensions, and relative (% theoretical) density.

Type
Articles
Copyright
Copyright © Materials Research Society 1998

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Bansal, N. P. and Setlock, J. A., in HITEMP Review- 1990: Advanced High Temperature Engine Materials Technology Program, NASA CP 10051, Oct. 1990, pp. 59–1–59–15.Google Scholar
2.Murthy, V. S. R. and Lewis, M. H., Br. Ceram. Trans. J. 89 (5), 173174 (1990).Google Scholar
3.Drummond III, C. H. and Bansal, N. P., Ceram. Eng. Sci. Proc. 11 (7–8), 10721086 (1990).CrossRefGoogle Scholar
4.Buzniak, J. J., Lagerlof, K. P. D., and Bansal, N. P., in Advances in Ceramic-Matrix Composites II, Ceram. Trans., edited by Singh, J. P. and Bansal, N. P. (The American Ceramic Society, Westerville, OH, 1993), Vol. 38, pp. 789801.Google Scholar
5.Bansal, N. P., in 17th Conference on Metal Matrix, Carbon, and Ceramic Matrix Composites, Part 2, NASA Conf. Publ. No. 3235, edited by Buckley, J. D. (1994).Google Scholar
6.Scanu, T., Guglielmi, J., and Colomban, Ph., Solid State Ionics 70/71, 109120 (1994).Google Scholar
7.Starczewski, M., Prace Inst. Hutniczych 14, 6974 (1962).Google Scholar
8.Oehlschlegel, G. and Ohnmacht, W., Glastech. Ber. 48 (11), 232236 (1975).Google Scholar
9.Levin, E. M. and McMurdie, H. F., Phase Diagrams for Ceramists, 1975 Supplement (The American Ceramic Society, Columbus, OH, 1975), Fig. 4544.Google Scholar
10. C. E. Semler and Foster, W. R., J. Am. Ceram. Soc. 53 (11), 595598 (1970).CrossRefGoogle Scholar
11.Lin, H. C. and Foster, W. R., J. Am. Ceram. Soc. 53 (10), 549551 (1970).CrossRefGoogle Scholar
12.Foster, W. R. and Lin, H. C., Am. J. Sci 267–A (1, 2), 134144 (1969).Google Scholar
13.Lin, H. C. and Foster, W. R., Mineral. Mag. 37 (288), 459465 (1969).CrossRefGoogle Scholar
14.Lin, H. C. and Foster, W. R., Am. Miner. 53, 134144 (1968).Google Scholar
15.Thomas, R. H., J. Am. Ceram. Soc. 33 (2), 3544 (1950).Google Scholar
16.Pickup, H. and Brook, R. J., in Engineering with Ceramics 2, Brit. Ceram. Proc., edited by Freer, R., Newsam, S., and Syers, G. (The Institute of Ceramics, Shelton, UK, No. 39, 1987), pp. 6976.Google Scholar
17.Bandyopadhyay, A., Quander, S. W., Aswath, P. B., Freitag, D. W., Richardson, K. K., and Hunn, D. L., Scripta Metall. Mater. 32 (9), 14171422 (1995).Google Scholar
18.Bandyopadhyay, A., Aswath, P. B., Porter, W. D., and Cavin, O. B., J. Mater. Res. 10, 12561263 (1995).Google Scholar
19.Bandyopadhyay, A. and Aswath, P. B., J. Mater. Res. 10, 31433148 (1995).CrossRefGoogle Scholar
20.Hwang, C. J. and Newman, R. A., Mater. Sci. 31 (1), 150156 (1996).CrossRefGoogle Scholar
21.Yu, F., Ortiz-Longo, C. R., and White, K. W., “The Microstructural Characterization of an In-Situ Grown Si3N4 Whisker-Reinforced BAS Glass-Ceramic Matrix Composite,” paper #SVIIP-18–96 presented at the 98th Annual American Ceramic Society Meeting, Indianapolis, IN, April 16, 1996.Google Scholar
22.Wong-Ng, W., McMurdie, H., Paretzkin, B., Hubbard, C., and Dragoo, A., Powder Diff. 2 (2), 107 (1987).Google Scholar
23.Moya Corral, J. W. and Verduch, A. Garcia, Trans. J. Br. Ceram. Soc. 77 (2), 4044 (1978).Google Scholar
24.Zaykoski, J. A. and Talmy, I. G., Ceram. Eng. Sci. Proc. 15 (910), 779786 (1994).Google Scholar
25.Smith, J. V. and Brown, W. L., Feldspar Mineralogy, Vol. 1 Crystal Structure, Physical, Chemical and Microtextural Properties (Springer-Verlag, Berlin, 1988); Feldspar Mineralogy, Reviews in Mineralogy, Volume 2, edited by Ribbe, P. H. (The Mineralogical Society of America, Washington, DC., 1983).Google Scholar
26. I. G. Talmy and Haught, D. A., 14th Conference on Composite Materials and Structures, NASA Conf. Publ. No. 3097, Part 1 (1990), pp. 227238.Google Scholar
27.Talmy, I. G., Haught, D. A., and Wuchina, E. J., in Critical Materials and Processing in a Changing World, Proc. 6th International SAMPE Electronics Conf., edited by Goldberg, A. B., Harper, C. A., Schroeder, M. S., and Ibrahim, A. M., (Society for the Advance-ment of Material and Process Engineering, Covina, CA, 1992), Vol. 6, pp. 687698.Google Scholar
28.Wuchina, E. J. and Talmy, I. G., 14th Conference on Composite Materials and Structures, NASA Conf. Publ. No. 3097, Part 1 (1990), pp. 239250.Google Scholar
29.Barrer, R. M. and Mainwaring, D. E., J. Chem. Soc. (Dalton Trans.) (6), 22962305 (1964).CrossRefGoogle Scholar
30.Barrer, R. M. and Mainwaring, D. E., J. Chem. Soc. (Dalton Trans.) (12), 12591265 (1972).Google Scholar
31.Ovramenko, N. A., B. Yu Kornilovich, and Ovcharenko, F. D., Dokl. Akad. Nauk SSSR 234 (5), 10971099 (1977).Google Scholar
32.Swamy, V., Menon, A. G., and Anantha, G. V.Iyer, J. Geol. Soc. India 43 (3), 305310 (1994).Google Scholar
33.Maslennikova, G. N., Fomina, N. P., and Naidenova, G. A., Steklo Keram. (9), 1719 (1973).Google Scholar
34.Planz, J. E. and uller-Hesse, H. M, Ber. Dtsch. Keram. Ges. 40 (3), 191–200 (1963).Google Scholar
35.Maslennikova, G. N., Fomina, N. P., and Kharitonov, F. Ya, Steklo Keram. (12), 2123 (1974).Google Scholar
36. K-T. Lee and Aswath, P. B., “Formation Mechanisms of Hexacelsian Barium Aluminosilicate from Mixtures of BaCO3, Al2O3 and SiO2,” paper #B-145–96 presented at the 98th Annual American Ceramic Society Meeting, Indianapolis, IN April 17, 1996.Google Scholar
37.Nordmann, A., Y-B. Cheng, and Muddle, B. C., J. Euro. Ceram. Soc. 15, 787794 (1995).Google Scholar
38.Talmy, I. G. and Haught, D. A., U.S. Patent No. 4,994,419, Feb. 19, 1991.Google Scholar
39.Debsikdar, J. C. and Sowemimo, O. S., J. Mater. Sci. 27, 5320–5324 (1992).Google Scholar
40.Bahat, D., J. Mater. Sci. 4 (10), 847854 (1969).Google Scholar
41.Bahat, D., J. Mater. Sci. 4 (10), 855860 (1969).Google Scholar
42.Bansal, N. P. and Hyatt, M. J., J. Mater. Res. 4, 1257 (1989).Google Scholar
43.Drummond, C. H. III and Bansal, N. P., Ceram. Eng. Sci. Proc. 11 (7–8), 10721086 (1990).Google Scholar
44.Bansal, N. P., Hyatt, M. J., and Drummond, C. H. III, Ceram. Eng. Sci. Proc. 12, (7–8), 12221234 (1991).Google Scholar
45.Chen, M., Lee, W. E., and James, P. F., J. Non-Cryst. Solids 130(3), 322–325 (1991).Google Scholar
46.Chen, M., Lee, W. E., and James, P. F., J. Non-Cryst. Solids 147–148, 532–536 (1992).Google Scholar
47.Chen, M., James, P. F., and Lee, W. E., J. Sol-Gel Sci. Technol. 2, 233–237 (1994).Google Scholar
48.Chen, M., James, P. F., and Lee, W. E., J. Sol-Gel. Sci. Technol. 1, 99–111 (1994).Google Scholar
49.Lee, W. E., Chen, M., and James, P. F., J. Am. Ceram. Soc. 78 (8), 2180–2186 (1995).Google Scholar
50.Debsikdar, J. C., J. Non-Cryst. Solids 144 (2, 3), 269276 (1992).Google Scholar
51.Debsikdar, J. C., Ceram. Eng. Sci. Proc. 14, (1–2) 405415 (1993).Google Scholar
52. Y-J. Du, Holland, D., and Pittson, R., Phys. Chem. Glasses 34 (3), 104108 (1993).Google Scholar
53.Hoghooghi, B., McKittrick, J., Butler, C., Helsel, E., and Lopez, O., in Better Ceramics through Chemistry VI, edited by Cheetham, A. K., Brinker, C. J., Mecartney, M. L., and Sanchez, C. (Mater. Res. Soc. Symp. Proc. 346, Pittsburgh, PA, 1994), pp. 493498.Google Scholar
54.Hoghooghi, B., McKittick, J., Butler, C., and Desch, P., J. Non- Cryst. Solids 170 (3), 303307 (1994).Google Scholar
55.Hoghooghi, B., McKittrick, J., Helsel, E., and Lopez, O., in Proc. of the 5th Int. Symp. on Ceramic Materials and Components for Engines, edited by Yan, D. S., Fu, S. R., and Shi, S. X. (World Scientific Press, Singapore, 1995), pp. 640643.Google Scholar
56.Sandhage, K. H., U.S. Patent 5,447,291, Sept. 5, 1995.Google Scholar
57.Schmutzler, H. J. and Sandhage, K. H., in Processing and Fabrication of Advanced Materials for High Temperature Applications III, edited by Ravi, V. A., Srivatsan, T. S., and J. J. Moore (TMS, Warrendale, PA, 1994), pp. 113124.Google Scholar
58.Schmutzler, H. J. and Sandhage, K. H., Ceram. Eng. Sci. Proc. 15 (4), 95103 (1994).Google Scholar
59.Schmutzler, H. J. and Sandhage, K. H., Met. Mater. Trans. B 26B, 135148 (1995).Google Scholar
60.Allameh, S. M. and Sandhage, K. H., J. Am. Ceram. Soc. 80 (12), 31093126 (1997).Google Scholar
61.Zhang, X-D., Sandhage, K. H., and Fraser, H. L., J. Am. Ceram. Soc. (in press).Google Scholar
62.Sandhage, K. H., U.S. Patent #5,318,725, June 7, 1994.Google Scholar
63.Anthony, M. M. and Sandhage, K. H., J. Mater. Res. 8, 29682977 (1993).CrossRefGoogle Scholar
64.Schmutzler, H. J., Antony, M. M., and Sandhage, K. H., J. Am. Ceram. Soc. 77 (3), 721729 (1994).Google Scholar
65.Schmutzler, H. J., Sandhage, K. H., and Nava, J. C., J. Am. Ceram. Soc. 79 (6), 15751584 (1996).Google Scholar
66.Ward, G. A. and Sandhage, K. H., J. Am. Ceram. Soc., 80 (6), 15081516 (1997).Google Scholar
67.Yamada, Y., Murasaki, S., Suganuma, M., and Mizutani, U., Jpn. J. Appl. Phys. 27 (5), L802–L803 (1988).Google Scholar
68.Sandhage, K. H., Masure, L. J., Smith, G. D., Poole, J. M., and McKimpson, M. G., in Proc. Symp. High Temp. Superconducting Compounds III, TMS Conference, New Orleans, LA, Feb. 18–20, 1991, edited by Whang, S. H., DasGupta, A., and Collings, E. (TMS, Warrendale, PA, 1991), pp. 347362.Google Scholar
69.Sandhage, K. H., J. Electrochem. Soc. 139 (6), 16621671 (1992).Google Scholar
70.Otto, A., Craven, C., Daly, D., Podtburg, E. R., Schreiber, J., and Masur, L. J., J. Metals 45 (9), 4852 (1993).Google Scholar
71.Masur, L. J., Podtburg, E. R., Craven, C. A., Otto, A., Wang, Z. L., and Kroeger, D. M., J. Metals 46 (12), 2830 (1994).Google Scholar
72.Metals Handbook, 8th ed., edited by Lyman, T., Boyer, H. E., Unterweiser, P. M., Foster, J. E., Hontas, J. P., and Lawton, H. (American Society for Metals, Metals Park, Novelty, OH, 1961), Vol. 1.Google Scholar
73.Pilling, N. B. and Bedworth, R. E., J. Inst. Metals 29 (1), 529581 (1923).Google Scholar
74.Leontis, T. E. and Rhines, F. N., Trans. A.I.M.E. 166, 265292 (1946).Google Scholar
75.Cubicciotti, D., J. Am. Chem. Soc. 74, 557558 (1952).CrossRefGoogle Scholar
76.Chandrasekharaiah, M. S. and Margrave, J. L., J. Electrochem. Soc. 108 (11), 10081012 (1961).Google Scholar
77.Kubaschewski, O. and Hopkins, B. E., Oxidation of Metals and Alloys, 2nd ed. (Butterworth, London, 1962), pp. 40, 47, 103, 108–114, 213, 230–240.Google Scholar
78.Newkirk, M. S., Urquhart, A. W., Zwicker, H. R., and Breval, E., J. Mater. Res. 1, 8189 (1986).Google Scholar
79.Newkirk, M. S., Lesher, H. D., White, D. R., Kennedy, C. R., Urquhart, A. W., and Claar, T. D., Ceram. Eng. Sci. Proc. 8, (7–8), 879–885 (1987).Google Scholar
80.Nagelberg, A. S., J. Mater. Res. 7, 265268 (1992).Google Scholar
81.Breslin, M. C., U.S. Patent No. 5,214,011, May 25, 1993.Google Scholar
82.Breslin, M. C., Ringnalda, J., Seeger, J., Marasco, A. L., Daehn, G. S.,and Fraser, H. L., Ceram. Eng. Sci. Proc. 15, (7, 8), 104–112 (1994).Google Scholar
83.Breslin, M. C., Ringnalda, J., Xu, L., Fuller, M., Seeger, J., Daehn, G. S., Otani, T., and Fraser, H. L., Mater. Sci. Eng. A 195, 113–119 (1995).Google Scholar
84.Merzhanov, A. G. and Borovinskaya, I. P., Dokl. Akad. Nauk. SSSR 204, 429432 (1972).Google Scholar
85.Munir, Z. A., Bull. Am. Ceram. Soc. 67 (2), 342349 (1988).Google Scholar
86.Haggerty, J. S. and Chiang, Y-M., Ceram. Eng. Sci. Proc. 11, 757–794 (1990).Google Scholar
87.Claussen, N., Le, T., and Wu, S., J. Eur. Ceram. Soc. 5, 2935 (1989).Google Scholar
88.Claussen, N., Travitsky, N. A., and Wu, S., Ceram. Eng. Sci. Proc. 11, (7, 8), 806–820 (1990).Google Scholar
89.Wu, S. and Claussen, N., J. Am. Ceram. Soc. 74 (10), 24602463 (1991).Google Scholar
90.Wu, S., Holz, D., and Claussen, N., J. Am. Ceram. Soc. 76 (4), 970980 (1993).Google Scholar
91.Wu, S., Gaus, S. P., Chan, H. M., Caram, H. S., and Harmer, M. P., pp. 209–218 in Advanced Synthesis and Processing of Composites and Advanced Ceramics, Ceram. Trans. The American Ceramic Society, Westerville, OH, 1995), Vol. 56, pp. 209218.Google Scholar
92.Murray, J. L. and McAlister, A. J., Bull. Alloy Phase Diagrams 5 (1), 7484 (1984).Google Scholar
93.Binary Alloy Phase Diagrams, edited by Massalski, T. B. (ASM, Metals Park, OH, 1986), Vol. 1, pp. 92, 93, 164167, 429.Google Scholar
94. G. Oehlschlegel and Ohnmacht, W., Glastech. Ber. 48 (11), 232236 (1975).Google Scholar
95.Klug, F. J., Prochazka, S., and Doremus, R. H., Ceram. Trans. 6, 1543 (1990).Google Scholar
96.Aksay, I. A. and Pask, J. A., J. Am. Ceram. Soc. 58 (11–12), 507512 (1975).Google Scholar
97.Davis, R. F. and Pask, J. A., J. Am. Ceram. Soc. 55 (10), 525 (1972).Google Scholar
98.Kimura, S., Bannai, E., and Shindo, I., Mater. Res. Bull. 17 (2), 209215 (1982).Google Scholar
99. JCPDS Cards: #01–1291 for Be; #20–0164 for BeO; #35–0821 for Mg; #45–0946 for MgO; #23–0430 for Ca; 37–1497 for CaO; #03–0865 for CaO2; #15–0306 for Sr; #06–0520 for SrO; #07- 0234 for SrO2; #6–0235 for Ba; #22–1056 for BaO; #7–233 for BaO2; #4–0791 for Al; #43–1484 for a–Al2O3; #27–1402 for Si; #39–1425 for SiO2 (cristobalite); #33–1161 for SiO2 (quartz); #06–0696 for Fe; #25–1402 for Fe2O3; #06–0615 for FeO; #04–0836 for Cu; #05–0667 for Cu2O; #05–0682 for Ti; #24–1276 for TiO2 (rutile) #05–0665 for Zr; #36–420 for ZrO2; #08–0056 for Ce; #34–0394 for CeO2; #5–0378 for BaCO3; #26–1403 for Ba2SiO4; #26–1402 for b–BaSiO3; #26–176 for b–BaSi2O5; #17–306 for BaAl2O4; #31–1336 for b–SrAl2O4; #12–725 for orthorhombic (pseudo-hexagonal) BaAl2Si2O8; #28–125 for hexagonal BaAl2Si2O8; #38–1450 for monoclinic BaAl2Si2O8; #38–1452 for monoclinic Ba0.5Sr0.5Al2Si2O8; #22- 511 for (Ba, Sr)SiO3; #20–143 for BaSrSi2O6; #39–1256 for Sr2SiO4.Google Scholar
100.Ito, S., Banno, S., Suzuki, K., and Inagaki, M., Z. Phys. Chem. 107 (1), 5356 (1977).Google Scholar
101.Paschoal, J. O. A., Kleykamp, H., and Thuemmler, F., J. Nucl. Mater. 151 (1), 1021 (1987).Google Scholar
102.Butterman, W. C. and Foster, W. R., Am. Mineral. 52, 880885 (1967).Google Scholar
103.Citak, R., Schmutzler, H. J., and Sandhage, K. H., unpublished work conducted at Ohio State University.Google Scholar
104.Planz, J. E. and Muller-Hesse, H., Ber. Dtsch. Keram. Ges. 38, 440450 (1961).Google Scholar
105.Fields, J. M. Jr., Dear, P. S., and Brown, J. J., Jr., J. Am. Ceram. Soc. 55 (12), 585588 (1972).Google Scholar
106.Shteinberg, Y. G., Gerasimov, V. N., and Gubar, V. N., J. Appl. Chem. USSR 40, 13781381 (1967).Google Scholar
107.Barin, I., Thermochemical Data of Pure Substances (VCH Verlagsgesellschaft, Weinheim, Germany, 1989), Vols. 1–2.Google Scholar
108.Bahat, D., J. Mater. Sci. 5 (9), 805810 (1970).Google Scholar
109.Liu, C., Komarneni, S., and Roy, R., J. Am. Ceram. Soc. 78 (9), 25212526 (1995).Google Scholar
110.Talmy, I. G. and Zaykoski, J. A., in 17th Conference on Metal Matrix, Carbon, and Ceramic Matrix Composites, Part 2, NASA Conf. Publ. No. 3235, edited by Buckley, J. D. (1994), pp. 759771.Google Scholar
111.Guillem Villar, M. C., Guillem Monzonis, C., and Alacon Navarro, J., Trans. J. Br. Ceram. Soc. 82, 6972 (1983).Google Scholar
112.Guillem Villar, M. C., Monzonis, C. Guillem, and Lopez, P. Escribano, Trans. J. Br. Ceram. Soc. 82, 197200 (1983).Google Scholar