Hostname: page-component-745bb68f8f-kw2vx Total loading time: 0 Render date: 2025-01-10T17:32:32.587Z Has data issue: false hasContentIssue false

Oxidation of epitaxial Fe films monitored by x-ray reflectivity

Published online by Cambridge University Press:  03 March 2011

A. Stierle
Affiliation:
Ruhr-Universität Bochum, Fakultät für Physik und Astronomie, Institut für experimentelle Festkörperphysik, 44780 Bochum 1, Germany
T. Mühge
Affiliation:
Ruhr-Universität Bochum, Fakultät für Physik und Astronomie, Institut für experimentelle Festkörperphysik, 44780 Bochum 1, Germany
H. Zabel
Affiliation:
Ruhr-Universität Bochum, Fakultät für Physik und Astronomie, Institut für experimentelle Festkörperphysik, 44780 Bochum 1, Germany
Get access

Abstract

We have studied the oxidation of thin epitaxial Fe(100) films on MgO(100) with and without an Au(100) protecting cap by x-ray reflectivity measurements. The oxidation was carried out under atmospheric conditions between 20 δC and 200 δC. The results are compared to the oxidation of Fe(110) oriented films on Al2O3(1120) substrates with an Au(111) cap. Auger electron spectroscopy before and after oxidation was carried out for sublimentary chemical information of the surface. For the uncovered Fe films we observe smoothly growing oxide films at the surface during oxidation at elevated temperatures. As expected, the Au(100) cap serves as an effective shield against oxidation, while the Au(111) cap, surprisingly, does not. In the case of Au/Fe/Al203, we find Fe2O3 formation at the surface of the Au layer at 200 δC. The different behavior of Au(100) and Au(111) is discussed in terms of stacking faults and/or domain structure occurring in the latter case during epitaxial growth.

Type
Articles
Copyright
Copyright © Materials Research Society 1994

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Báumer, M., Cappus, D., Freund, H-J., Wilhelmi, G., Brodde, A., and Neddermeyer, H., Surf. Sci. 253, 116 (1991).CrossRefGoogle Scholar
2Xu, C., Hassel, M., Kuhlenbeck, H., and Freund, H-J., Surf. Sci. 258, 23 (1991).CrossRefGoogle Scholar
3Morohashi, S., Kataoka, Y., Imamura, T., and Hasuo, S., Appl. Phys. Lett. 62, 1164 (1993).CrossRefGoogle Scholar
4Zabel, H., in Festkörperprobleme (Advances in Solid State Physics), edited by Rossler, U. (Vieweg, Braunschweig, Germany, 1990), Vol. 30, p. 197.Google Scholar
5Cowley, R. A. and Ryan, T. W., J. Phys. D: Appl. Phys. 20, 61 (1987).CrossRefGoogle Scholar
6Brüggemann, L., Bloch, R., Press, W., and Gerlach, P., J. Phys.: Condensed Matter 2, 8869 (1990).Google Scholar
7Fuoss, P. H. and Norton, L. J., Phys. Rev. Lett. 60, 600 (1988).CrossRefGoogle Scholar
8Stierle, A., Abromeit, A., Metoki, N., and Zabel, H., J. Appl. Phys. 73, 4808 (1993).CrossRefGoogle Scholar
9Nakajima, K., Aoiki, S., Sudo, S., Mondo, M., and Kudo, H., Jpn. J. Appl. Phys. 32, 164 (1993).CrossRefGoogle Scholar
10Cheng, Y., Smith, D. J., Stearns, M. B., and Stearns, D. G., J. Appl. Phys. 72, 5165 (1992).CrossRefGoogle Scholar
11Bahr, D., Press, W., Jebasinski, R., and Mantl, S., Phys. Rev. B 47, 4385 (1993).CrossRefGoogle Scholar
12Heald, S. M. and Barrera, E. V., J. Mater. Res. 6, 935 (1991).CrossRefGoogle Scholar
13Smentkowski, V. S. and Yates, J. T. Jr., Surf. Sci. 232, 113 (1990).CrossRefGoogle Scholar
14Langell, M. and Somorjai, G. A., J. Vac. Sci. Technol. 21, 858 (1982).CrossRefGoogle Scholar
15Sinkovic, V., Johnson, P. D., Brooks, N. B., Clarke, A., and Smith, N. V., Phys. Rev. Lett. 65, 1647 (1990).CrossRefGoogle Scholar
16Mclntyre, N. S. and Zetaruk, D. G., Anal. Chem. 49, 1521 (1977).CrossRefGoogle Scholar
17Vasudevan, S., Hedge, M. S., and Rao, C. N. R., J. Solid State Chem. 29, 253 (1979).CrossRefGoogle Scholar
18Morawe, Ch., Stierle, A., Metoki, N., Bröhl, K., and Zabel, H., J. Magn. Magn. Mater. 102, 223 (1991).CrossRefGoogle Scholar
19Hansen, M., Constitution of Binary Alloys (McGraw-Hill Book Company, New York, 1958).CrossRefGoogle Scholar
20Metoki, N., Hofelich, M., Zeidler, Th., Mühge, T., Morawe, C., and Zabel, H., J. Magn. Magn. Mater. 121, 137 (1993).CrossRefGoogle Scholar
21Metoki, N., Mühge, T., and Zabel, H., unpublished.Google Scholar
22Shintaku, K., Daitoh, Y., and Shinjo, T., Phys. Rev. B 47, 14584 (1993).CrossRefGoogle Scholar
23Okuyama, T., Jpn. J. Appl. Phys. 30, 2053 (1991).CrossRefGoogle Scholar
24Leibbrandt, G. W. R., Hoogers, G., and Habraken, F. H. P. M., Phys. Rev. Lett. 68, 1947 (1992).CrossRefGoogle Scholar
25Als Nielsen, J., in Structure and Dynamics ofSurfaces II, Topics in Current Physics, edited by Schommers, W. and Blanckenhagen, P. (1987), Vol. 43.Google Scholar
26Parratt, L. G., Phys. Rev. 95, 359 (1954).CrossRefGoogle Scholar
27Névot, L. and Croce, P., Revue Phys. Appl. 15, 761 (1980).CrossRefGoogle Scholar
28Colaianni, M. L., Chen, P. J., and Yates, J. T. Jr., Surf. Sci. 238, 13 (1990).CrossRefGoogle Scholar
29Dhote, A. M., Patil, S. C., Kanetkar, S. M., Gangal, S. A., and Ogale, S. B., J. Mater. Res. 7, 1685 (1992).CrossRefGoogle Scholar
30Chang, C., Appl. Phys. Lett. 55, 2754 (1989).CrossRefGoogle Scholar
31Feidenhans'l, R., Surf. Sci. Rep. 10, 105 (1989).CrossRefGoogle Scholar
32Krebs, L. A., Kruger, J., Long, G. G., Ankner, J. F., Majkrzak, C. F., Satija, S. K., and Wiesler, D. G., Proceedings of the Symposium on Oxide Films on Metals and Alloys (The Electrochemical Society, Pennington, NJ, 1992), Vol. 92–22, p. 580.Google Scholar
33Majkrzak, C. F., Physica B 173, 75 (1991).CrossRefGoogle Scholar
34Schreyer, A., Zeidler, T., Morawe, Ch., Metoki, N., Zabel, H., Ankner, J. F., and Majkrzak, C. F., J. Appl. Phys. 73, 7616 (1993).CrossRefGoogle Scholar