Hostname: page-component-78c5997874-m6dg7 Total loading time: 0 Render date: 2024-11-20T04:51:36.824Z Has data issue: false hasContentIssue false

Oxidation of c-axis-oriented epitaxial YBa2Cu3O7–δ thin films in ozone-containing atmospheres

Published online by Cambridge University Press:  31 January 2011

B. J. Gibbons*
Affiliation:
Superconductivity Technology Center, Los Alamos National Laboratory, Los Alamos, New Mexico 87545
C. B. Eom
Affiliation:
University of Wisconsin—Madison, Madison, Wisconsin 53706
R. A. Rao
Affiliation:
University of Wisconsin—Madison, Madison, Wisconsin 53706
S. Trolier-McKinstry
Affiliation:
The Pennsylvania State University, University Park, Pennsylvania 16802
D. G. Schlom
Affiliation:
The Pennsylvania State University, University Park, Pennsylvania 16802
*
a)Address all correspondence to this author.[email protected]
Get access

Abstract

Oxygen diffusion into c-axis-oriented YBa2Cu3O7-δ epitaxial thin films was observed using real-time spectroscopic ellipsometry. The experiments were conducted under controlled atmospheres of 10% O3/90% O2 and 80% O3/20% O2. At 2 × 10-5 torr, oxidation of the films began at temperatures as low as 100–125 °C for heating rates ≤3 °C/min. Full oxidation was seen by 190 °C at these rates. Based on these data, the activation energy of oxygen diffusion into YBa2Cu3O7-δ from an ozone/oxygen atmosphere was found to be between 0.43 and 0.52 eV. This was appreciably smaller than for in-diffusion in a molecular oxygen atmosphere. Higher ozone content atmospheres did not improve the oxidation kinetics. These atmospheres did, however, delay the onset of reduction in the films by 60–70 °C at higher temperatures.

Type
Articles
Copyright
Copyright © Materials Research Society 2002

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1Likharev, K.K., in The New Superconducting Electronics, edited by Weinstock, H. and Ralston, R.W. (Kluwer, Dordrecht, Germany, 1993).Google Scholar
2Clarke, J., in The New Superconducting Electronics, edited by Weinstock, H. and Ralston, R.W. (Kluwer, Dordrecht, Germany, 1993).Google Scholar
3Tu, K.N., Park, S.I., and Tsuei, C.C., Appl. Phys. Lett. 51, 2158 (1987).CrossRefGoogle Scholar
4Tu, K.N., Tsuei, C.C., Park, S.I., and Levi, A., Phys. Rev. B 38, 772 (1988).CrossRefGoogle Scholar
5Glowacki, B.A., Highmore, R.J., Peters, K.F., Greer, A.L., and Evetts, J.E., Supercond. Sci. Technol. 1, 7 (1988).CrossRefGoogle Scholar
6Tu, K.N., Yeh, N.C., Park, S.I., and Tsuei, C.C., Phys. Rev. B 38, 5118 (1988).CrossRefGoogle Scholar
7Brabers, V.A.M., Jonge, W.J.M. de, Bosch, L.A., Steen, C. van der, Groote, A.M.W. de, Verheyen, A.A., and Vennix, C.W.H.M., Mater. Res. Bull. 23, 197 (1988).CrossRefGoogle Scholar
8Yeh, N.C., Tu, K.N., Park, S.I., and Tsuei, C.C., Phys. Rev. B 38, 7087 (1988).CrossRefGoogle Scholar
9Vischjager, D.J., Put, P.J. Van der, Schram, J., and Schoonman, J., Solid State Ionics 27, 199 (1988).CrossRefGoogle Scholar
10Ikuma, Y. and Akiyoshi, S., J. Appl. Phys. 64, 3915 (1988).CrossRefGoogle Scholar
11Tu, K.N., Yeh, N.C., Park, S.I., and Tsuei, C.C., Phys. Rev. B 39, 304 (1989).CrossRefGoogle Scholar
12Rothman, S.J., Routbort, J.L., and Baker, J.E., Phys. Rev. B 40, 8852 (1989).CrossRefGoogle Scholar
13Tuller, H.L. and Opila, E., Solid State Ionics 40/41, 790 (1990).CrossRefGoogle Scholar
14Maier, J., Murugaraj, P., and Pfundtner, G., Solid State Ionics 40/41, 802 (1990).CrossRefGoogle Scholar
15Tallon, J.L. and Staines, M.P., J. Appl. Phys. 68, 3998 (1990).CrossRefGoogle Scholar
16Scolnik, Y., Sabatani, E., and Cahen, D., Physica C 174, 273 (1991).CrossRefGoogle Scholar
17Tang, T.B. and Lo, W., Physica C 174, 463 (1991).CrossRefGoogle Scholar
18Schleger, P., Hardy, W.N., and Yang, B.X., Physica C 176, 261 (1991).CrossRefGoogle Scholar
19Bredikhin, S.I., Emel'chenko, G.A., Shechtman, V.S., Zhokhov, A.A., Carter, S., Chater, R.J., Kilner, J.A., and Steele, B.C.H., Physica C 179, 286 (1991).CrossRefGoogle Scholar
20MacManus, J.L., Fray, D.J., and Evetts, J.E., Physica C 190, 511 (1992).CrossRefGoogle Scholar
21Krauns, C. and Krebs, H-U., Z. Phys. B 92, 43 (1993).CrossRefGoogle Scholar
22LaGraff, J.R. and Payne, D.A., Physica C 212, 470 (1993).CrossRefGoogle Scholar
23Conder, K. and Krüger, C., Physica C 269, 92 (1996).CrossRefGoogle Scholar
24Aarnink, W.A.M., IJsselsteijn, R.P.J., Gao, J., Silfhout, A. van, and Rogalla, H., Phys. Rev. B 45, 13002 (1992).CrossRefGoogle Scholar
25Bijlsma, M.E., Ph.D. Thesis, University of Twente, Enschede, The Netherlands (1996).Google Scholar
26Span, E.A.F., Wormeester, H., Blank, D.H.A., and Rogalla, H., Mater. Sci. Eng. B 56, 123 (1998).CrossRefGoogle Scholar
27Bock, A., Kürsten, R., Brühl, M., Dieckmann, N., and Merkt, U., Phys. Rev. B 54, 4300 (1996).CrossRefGoogle Scholar
28Sageev-Grader, G., Gallagher, P.K., Thomson, J., and Gurvitch, M., Appl. Phys. A 45, 179 (1988).CrossRefGoogle Scholar
29Yoshida, A., Tamura, H., Morohashi, S., and Hasuo, S., Appl. Phys. Lett. 53, 811 (1988).CrossRefGoogle Scholar
30Ying, Q.Y., Kim, H.S., Shaw, D.T., and Kwok, H.W., Appl. Phys. Lett. 55, 1041 (1989).CrossRefGoogle Scholar
31Yamamoto, K., Lairson, B.M., Bravman, J.C., and Geballe, T.H., J. Appl. Phys. 69, 7189 (1991).CrossRefGoogle Scholar
32Lee, S.H., Bae, S.C., Ku, J.K., and Shin, H.J., Phys. Rev. B 46, 9142 (1992).CrossRefGoogle Scholar
33Li, Y., Kilner, J.A., Tate, T.J., Lee, M.J., Chater, R.J., Fox, H., Souza, R.A. De, and Quincey, P.G., Phys. Rev. B 51, 8498 (1995).CrossRefGoogle Scholar
34Li, Y.P., Liu, J.R., Chu, W.K., Kilner, J.A., and Tate, T.J., in Proc. 14th Int. Conf. on the Application of Accelerators in Research and Industry, edited by Duggan, J.L. and Morgan, I.L. (AIP, Woodbury, NY, 1996), p. 693.Google Scholar
35Kircher, J., Kelly, M.K., Rashkeev, S., Alouani, M., Fuchs, D., and Cardona, M., Phys. Rev. B 44, 217 (1991).CrossRefGoogle Scholar
36Gibbons, B.J. and Trolier-McKinstry, S., Thin Solid Films 352, 205 (1999).CrossRefGoogle Scholar
37Eom, C.B., Sun, J.Z., Yamamoto, K., Marshall, A.F., Luther, K.E., Geballe, T.H., and Laderman, S.S., Appl. Phys. Lett. 55, 595 (1989).CrossRefGoogle Scholar
38Eom, C.B., Sun, J.Z., Lairson, B.M., Streiffer, S.K., Marshall, A.F., Yamamoto, K., Anlage, S.M., Bravman, J.C., and Geballe, T.H., Physica C 171, 354 (1990).CrossRefGoogle Scholar
39Kraisinger, C., M.S. Thesis, The Pennsylvania State University, University Park, PA (1996).Google Scholar
40Schlom, D.G. and Harris, J.S. Jr., in Molecular Beam Epitaxy: Applications to Key Materials, edited by Farrow, R.F.C. (Noyes Publications, Park Ridge, NJ, 1995), p. 505.CrossRefGoogle Scholar
41Theis, C.D. and Schlom, D.G., in High Temperature Materials Chemistry IX, edited by Spear, K.E. (Electrochemical Society, Pennington, 1997), Vol. 97–39, p. 610.Google Scholar
42Gibbons, B.J., Hawley, M.E., Trolier-McKinstry, S., and Schlom, D.G., J. Vac. Sci. Technol. A 19, 584 (2001).CrossRefGoogle Scholar
43Kissinger, H.E., Anal. Chem. 29, 1702 (1957).CrossRefGoogle Scholar
44Ozawa, T., J. Therm. Anal. 2, 301 (1970).CrossRefGoogle Scholar
45 See for example, Science and Technology of Thin Film Superconductors II, edited by McConnell, R.D. and Noufi, R. (Plenum, New York, 1990).CrossRefGoogle Scholar