Hostname: page-component-745bb68f8f-v2bm5 Total loading time: 0 Render date: 2025-01-10T21:08:31.810Z Has data issue: false hasContentIssue false

Orientation-specific amorphization and intercalated recrystallization at ion-irradiated SrTiO3/MgO interfaces

Published online by Cambridge University Press:  27 August 2014

Jeffery A. Aguiar*
Affiliation:
Materials Science and Technology Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA
Mujin Zhuo
Affiliation:
Center for Integrated Nanotechnologies, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA
Zhenxing Bi
Affiliation:
Center for Integrated Nanotechnologies, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA
Engang Fu
Affiliation:
Materials Science and Technology Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA
Yongqiang Wang
Affiliation:
Materials Science and Technology Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA
Pratik P. Dholabhai
Affiliation:
Materials Science and Technology Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA
Amit Misra
Affiliation:
Center for Integrated Nanotechnologies, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA
Quanxi Jia
Affiliation:
Center for Integrated Nanotechnologies, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA
Blas P. Uberuaga
Affiliation:
Materials Science and Technology Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA
*
a)Address all correspondence to this author. e-mail: [email protected]
Get access

Abstract

Oxide composites are a class of materials with potential uses for nuclear, space, and coating applications. Exploiting their promise, however, requires a detailed understanding of their interfacial structure and chemistry. Using analytical microscopy, we have examined the radiation damage behavior at the interface of a model oxide bilayer, SrTiO3/MgO. The as-synthesized SrTiO3 thin film contained both (100) and (110) oriented domains. We found that after ion beam implantation the (110) domains amorphized at a lower radiation fluence than the (100) domains. Further, a persistent crystalline layer of SrTiO3 forms at the interface even as the rest of the SrTiO3 film amorphizes. We hypothesize that the enhanced amorphization susceptibility of the (110) domains is a consequence of how charged irradiation-induced defects at the interfaces interact with the charged planes of the (110) domains. These results demonstrate the complex relationship between interfacial structure and radiation damage evolution at oxide interfaces.

Type
Invited Feature Paper
Copyright
Copyright © Materials Research Society 2014 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Weber, W.J., Ewing, R.C., Catlow, C.R.A., Diaz de la Rubia, T., Hobbs, L.W., Kinoshita, C., Matzke, H., Motta, A.T., Nastasi, M., Salje, E.K.H., Vance, E.R., and Zinkle, S.J.: Radiation effects in crystalline ceramics for the immobilization of high-level nuclear waste and plutonium. J. Mater. Res. 13(6), 14341484 (1998).Google Scholar
Ajayan, P.M.: Nanocomposite Science and Technology (Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, Germany, 2004).Google Scholar
Xia, Z., Riester, L., Curtin, W.A., Li, H., Sheldon, B.W., Liang, J., Chang, B., and Xu, J.M.: Direct observation of toughening mechanisms in carbon nanotube ceramic matrix composites. Acta Mater. 52(4), 931944 (2004).Google Scholar
Peigney, A., Laurent, C., Flahaut, E., and Rousset, A.: Carbon nanotubes in novel ceramic matrix nanocomposites. Ceram. Int. 26(6), 677683 (2000).Google Scholar
Yamawaki, M., Yamaguchi, K., and Suzuki, A.: Impact of interfaces on nuclear materials. Ionics 7(4–6), 339345 (2001).Google Scholar
Voevodin, A.A. and Zabinski, J.S.: Nanocomposite and nanostructured tribological materials for space applications. Compos. Sci. Technol. 65(5), 741748 (2005).Google Scholar
Eberly, D., Ou, R., Karcz, A., and Skandan, G.: Self-healing nanocomposites for reusable composite cryotanks. NASA Tech Brief. MFS-32995–1, 2013.Google Scholar
Zhang, S., Sun, D., Fu, Y., and Du, H.: Recent advances of superhard nanocomposite coatings: A review. Surf. Coat. Technol. 167(2–3), 113119 (2003).Google Scholar
Birkholz, M., Albers, U., and Jung, T.: Nanocomposite layers of ceramic oxides and metals prepared by reactive gas-flow sputtering. Surf. Coat. Technol. 179(2–3), 279285 (2004).Google Scholar
Rubloff, G.W.: Microscopic properties and behavior of silicide interfaces. Surf. Sci. 132(1–3), 268314 (1983).Google Scholar
Chiang, Y-M., Lavik, E.B., Kosacki, I., Tuller, H.L., and Ying, J.Y.: Defect and transport properties of nanocrystalline CeO2−x. Appl. Phys. Lett. 69(2), 185187 (1996).CrossRefGoogle Scholar
Misra, A., Demkowicz, M.J., Zhang, X., and Hoagland, R.G.: The radiation damage tolerance of ultra-high strength nanolayered composites. JOM 62(59), 62 (2007).Google Scholar
Misra, A., Hoagland, R.G., and Kung, H.: Thermal stability of self-supported nanolayered Cu/Nb films. Philos. Mag. 84(10), 10211028 (2004).Google Scholar
Han, W.Z., Misra, A., Mara, N.A., Germann, T.C., Baldwin, J.K., Shimada, T., and Luo, S.N.: Role of interfaces in shock-induced plasticity in Cu/Nb nanolaminates. Philos. Mag. 91(32), 41724185 (2011).Google Scholar
Valdez, J.A., Usov, I.O., Won, J., Tang, M., Dickerson, R.M., Jarvinen, G.D., and Sickafus, K.E.: 10MeV Au ion irradiation effects in an MgO–HfO2 ceramic–ceramic (CERCER) composite. J. Nucl. Mater. 393(1), 126133 (2009).CrossRefGoogle Scholar
Usov, I.O., Valdez, J.A., Won, J., and Devlin, D.J.: Ion irradiation temperature effect on HfO2/MgO multi-layer structures. J. Nucl. Mater. 420(1–3), 262267 (2012).Google Scholar
Shen, T.D., Feng, S., Tang, M., Valdez, J.A., Wang, Y.Q., and Sickafus, K.E.: Enhanced radiation tolerance in nanocrystalline MgGa2O4. Appl. Phys. Lett. 90(26), 263115 (2007).Google Scholar
Meldrum, A., Boatner, L.A., and Ewing, R.C.: Nanocrystalline zirconia can be amorphized by ion irradiation. Phys. Rev. Lett. 88, 025503 (2001).Google Scholar
Oyoshi, K., Hishita, S., and Haneda, H.: Study of ion beam induced epitaxial crystallization of SrTiO3. J. Appl. Phys. 87(7), 34503456 (2000).CrossRefGoogle Scholar
Nakao, S., Wang, Z., Jin, P., Miyagawa, Y., and Miyagawa, S.: Effect of high-energy Si+ ion irradiation on the crystallization behavior of amorphous strontium titanate films. Nucl. Instrum. Methods Phys. Res., Sect. B 191(1–4), 226229 (2002).Google Scholar
Zhang, Y., Lian, J., Wang, C.M., Jiang, W., Ewing, R.C., and Weber, W.J.: Ion-induced damage accumulation and electron-beam-enhanced recrystallization in SrTiO3. Phys. Rev. B 72, 094112 (2005).Google Scholar
Meldrum, A., Boatner, L.A., and Ewing, R.C.: Effects of ionizing and displacive irradiation on several perovskite-structure oxides. Nucl. Instrum. Meth. Phys. Res. 141, 347 (1998).Google Scholar
Zhuo, M.J., Uberuaga, B.P., Yan, L., Fu, E.G., Dickerson, R.M., Wang, Y.Q., Misra, A., Nastasi, M., and Jia, Q.X.: Radiation damage at the coherent anatase TiO2/SrTiO3 interface under Ne ion irradiation. J. Nucl. Mater. 429(1–3), 177184 (2012).CrossRefGoogle Scholar
Bi, Z., Uberuaga, B.P., Vernon, L.J., Fu, E., Wang, Y., Li, N., Wang, H., Misra, A., and Jia, Q.X.: Radiation damage in heteroepitaxial BaTiO3 thin films on SrTiO3 under Ne ion irradiation. J. Appl. Phys. 113(2), 263115 (2013).Google Scholar
Uberuaga, B.P., Martinez, E., Bi, Z., Zhuo, M.J., Jia, Q.X., Nastasi, M.A., Misra, A., and Caro, A.: Defect distributions and transport in nanocomposites: A theoretical perspective. Mater. Res. Lett. 1(4), 193199 (2013).CrossRefGoogle Scholar
Bi, Z., Uberuaga, B.P., Vernon, L.J., Aguiar, J.A., Fu, E.G., Zheng, S., Zhang, S., Wang, Y., Misra, A., and Jia, Q.: Role of the interface on radiation damage in the SrTiO3/LaAlO3 heterostructure under Ne2+ ion irradiation. J. Appl. Phys. 115(12), 124315 (2014).Google Scholar
Aguiar, J.A., Dholabhai, P.P., Bi, Z., Jia, Q., Fu, E.G., Wang, Y.Q., Aoki, T., Zhu, J., Misra, A., and Uberuaga, B.P.: Linking interfacial step structure and chemistry with locally enhanced radiation-induced amorphization at oxide heterointerfaces. Adv. Mater. Interfaces 1(4) (2014).Google Scholar
Nellist, P.D., Chisholm, M.F., Dellby, N., Krivanek, O.L., Murfitt, M.F., Szilagyi, Z.S., Lupini, A.R., Borisevich, A., Sides, W.H., and Pennycook, S.J.: Direct sub-angstrom imaging of a crystal lattice. Science 305(5691), 1741 (2004).Google Scholar
Krivanek, O.L., Dellby, N., and Lupini, A.R.: Towards sub-Å electron beams. Ultramicroscopy 78(1–4), 111 (1999).Google Scholar
Muller, D.A., Nakagawa, N., Ohtomo, A., Grazul, J.L., and Hwang, H.Y.: Atomic-scale imaging of nanoengineered oxygen vacancy profiles in SrTiO3. Nature 430(7000), 657661 (2004).Google Scholar
Ziegler, J.F., Bierscack, J.P., and Littmark, U.: The Stopping and Range of Ions in Solids (Pergamon Press, New York, NY, 1996).Google Scholar
Won, J., Vernon, L.J., Karakuscu, A., Dickerson, R.M., Cologna, M., Raj, R., Wang, Y.Q., Yoo, S.J., Lee, S-H., Misra, A., and Uberuaga, B.P.: The role of non-stoichiometric defects in radiation damage evolution of SrTiO3. J. Mater. Chem. A 1(32), 92359245 (2013).Google Scholar
Blaha, P., Schwarz, K., Sorantin, P., and Trickey, S.B.: Full-potential, linearized augmented plane wave programs for crystalline systems. Comput. Phys. Commun. 59(2), 399415 (1990).Google Scholar
Aguiar, J.A., Ramasse, Q.M., Asta, M., and Browning, N.D.: Investigating the electronic structure of fluorite-structured oxide compounds: Comparison of experimental EELS with first principles calculations. J. Phys.: Condens. Matter 24(29), 295503 (2012).Google Scholar
Perdew, J.P., Burke, K., and Ernzerhof, M.: Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 38653868 (1996).Google Scholar
Holec, D., Costa, P., Cherns, P., and Humphreys, C.J.: A theoretical study of ELNES spectra of AlxGa1−xNAlxGa1−xN using Wien2k and Telnes programs. Computat. Mater. Sci. 44(1), 9196 (2008).Google Scholar
Sanchez, F., Aguiar, R., Trtik, V., Guerrero, C., Ferrater, C., and Varela, M.: Epitaxial growth of SrTiO3 (00h), (0hh), and (hhh) thin films on buffered Si(001). J. Mater. Res. 13(6), 14221425 (1998).Google Scholar
Tasker, P.W.: The stability of ionic crystal surfaces. J. Phys. C: Solid State Phys. 12, 4977 (1979).Google Scholar
Eglitis, R.I. and Vanderbilt, D.: Ab initio calculations of BaTiO3 and PbTiO3(001) and (011) surface structures. Phys. Rev. B 76, 155439 (2007).Google Scholar
Eng, L.M., Güntherodt, H-J., Schneider, G.A., Köpke, U., and Muñoz Saldaña, J.: Nanoscale reconstruction of surface crystallography from three-dimensional polarization distribution in ferroelectric barium–titanate ceramics. Appl. Phys. Lett. 74, 233235 (1999).Google Scholar
Goniakowski, J., Finocchi, F., and Noguera, C.: Polarity of oxide surfaces and nanostructures. Rep. Prog. Phys. 71(1), 016501 (2008).CrossRefGoogle Scholar
Zhu, Y., Song, C., Minor, A.M., and Wang, H.: Cs-corrected scanning transmission electron microscopy investigation of dislocation core configurations at a SrTiO3/MgO heterogeneous interface. Microsc. Microanal. 19(3), 706715 (2013).Google Scholar
Chiang, Y-M. and Touichi, T.: Grain-boundary chemistry of barium titanate and strontium titanate: I, high-temperature equilibrium space charge. J. Am. Ceram. Soc. 73(11), 32783285 (1990).Google Scholar
Han, W.Z., Demkowicz, M.J., Fu, E.G., Wang, Y.Q., and Misra, A.: Effect of grain boundary character on sink efficiency. Acta Mater. 60(18), 63416351 (2012).Google Scholar
Meldrum, A., Boatner, L.A., Weber, W.J., and Ewing, R.C.: Amorphization and recrystallization of the ABO3 oxides. J. Nucl. Mater. 300(2–3), 242254 (2002).Google Scholar
Usov, I.O., Arendt, P.N., Groves, J.R., Stan, L., and DePaula, R.F.: Crystallographic orientation dependence of radiation damage in Ar+ implanted YSZ and MgO single crystals. Nucl. Instrum. Methods Phys. Res., Sect. B 240(3), 661665 (2005).Google Scholar
Uberuaga, B.P. and Bai, X-M.: Defects in rutile and anatase polymorphs of TiO2: Kinetics and thermodynamics near grain boundaries. J. Phys.: Condens. Matter 23(43), (2011).Google ScholarPubMed
Karakuscu, A., Cologna, M., Yarotski, D., Won, J., Francis, J.S.C., Raj, R., and Uberuaga, B.P.: Defect structure of flash-sintered strontium titanate. J. Am. Ceram. Soc. 95(8), 25312536 (2012).CrossRefGoogle Scholar
Valone, S.M., Uberuaga, B.P., Liu, X-Y., Jeon, B., Chaudhry, A., and Grønbech-Jensen, N.: Cascade-driven mixing at metal oxide interfaces. Nucl. Instrum. Methods Phys. Res., Sect. B 268(19), 31143116 (2010). Radiation Effects in Insulators – Proceedings of the 15th International Conference on Radiation Effects in Insulators (REI), 15th International Conference on Radiation Effects in Insulators (REI).Google Scholar
Firstov, G.S., Van Humbeeck, J., and Koval, Y.N.: Comparison of high temperature shape memory behaviour for ZrCu-based, Ti–Ni–Zr and Ti–Ni–Hf alloys. Scr. Mater. 50(2), 243248 (2004). Viewpoint Set No. 33. Shape Memory Alloys.Google Scholar
Afanas’ev, V.V., Stesmans, A., Chen, F., Li, M., and Campbell, S.A.: Electrical conduction and band offsets in Si/HfxTi1xO2/metal structures. J. Appl. Phys. 95(12), 79367939 (2004).CrossRefGoogle Scholar
Vepek, S.: The search for novel, superhard materials. J. Vacuum Sci. Technol. 17(5), 24012420 (1999).Google Scholar
Zhuo, M.J., Fu, E.G., Yan, L., Wang, Y.Q., Zhang, Y.Y., Dickerson, R.M., Uberuaga, B.P., Misra, A., Nastasi, M., and Jia, Q.X.: Interface-enhanced defect absorption between epitaxial anatase TiO2 film and single crystal SrTiO3. Scr. Mater. 65(9), 807810 (2011).Google Scholar