Hostname: page-component-586b7cd67f-rcrh6 Total loading time: 0 Render date: 2024-11-29T18:03:40.508Z Has data issue: false hasContentIssue false

Orientation relationships between coherent interfaces in hcp–fcc systems subjected to high strain-rate deformation and fracture modes

Published online by Cambridge University Press:  05 August 2015

Shoayb Ziaei
Affiliation:
Department of Mechanical and Aerospace Engineering, North Carolina State University, Raleigh, North Carolina 27695-7910, USA
Qifeng Wu
Affiliation:
Department of Mechanical and Aerospace Engineering, North Carolina State University, Raleigh, North Carolina 27695-7910, USA
Mohammed A. Zikry*
Affiliation:
Department of Mechanical and Aerospace Engineering, North Carolina State University, Raleigh, North Carolina 27695-7910, USA
*
a)Address all correspondence to this author. e-mail: [email protected]
Get access

Abstract

We investigated how coherent interfaces, between face centered cubic (fcc)/hexagonal close packed (hcp) systems, affect large strain deformation and fracture modes in hcp zircaloy aggregates with fcc hydrides. We derived 36 unique transformations related to coherent interfaces between fcc and hcp systems. We then used these orientation relations (ORs) with a dislocation-density crystalline plasticity formulation, a nonlinear finite-element, and a fracture approach that account for crack nucleation and propagation. We investigated how these ORs affect crack nucleation and propagation, dislocation density and inelastic slip evolution, stress accumulation, lattice rotation, and adiabatic heating. The predictions indicate that the physical representation of ORs affects local deformation and fracture behavior and are, therefore, essential for the accurate predictions of behavior at different physical scales in heterogeneous crystalline systems.

Type
Articles
Copyright
Copyright © Materials Research Society 2015 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Lévesque, J., Inal, K., Neale, K.W., and Mishra, R.K.: Numerical modeling of formability of extruded magnesium alloy tubes. Int. J. Plast. 26(1), 65 (2010).Google Scholar
Graff, S., Brocks, W., and Steglich, D.: Yielding of magnesium: From single crystal to polycrystalline aggregates. Int. J. Plast. 23(12), 1957 (2007).Google Scholar
Inal, K. and Mishra, R.K.: Crystal plasticity based numerical modelling of large strain deformation inhexagonal closed packed metals. Procedia IUTAM 3, 239 (2012).Google Scholar
Lavrentev, F.F. and Pokhil, Y.A.: Relation of dislocation density in different slip systems to work hardening parameters for magnesium crystals. Mater. Sci. Eng. 18(2), 261 (1975).Google Scholar
Ziaei, S. and Zikry, M.A.: Modeling the effects of dislocation-density interaction, generation, and recovery on the behavior of H.C.P. materials. Metall. Mater. Trans. A 1 (2014).Google Scholar
Gey, N. and Humbert, M.: Characterization of the variant selection occurring during the α→β→α phase transformations of a cold rolled titanium sheet. Acta Mater. 50(2), 277 (2002).Google Scholar
Suwas, S., Ray, R.K., Singh, A.K., and Bhargava, S.: Evolution of hot rolling textures in a two-phase (α2+β) Ti3Al base alloy. Acta Mater. 47(18), 4585 (1999).Google Scholar
Suwas, S. and Ray, R.K.: Effect of rolling on textures of primary and secondary α2 produced by thermomechanical processing of the intermetallic alloy Ti-24Al-11Nb. Scr. Mater. 44(2), 275 (2001).Google Scholar
Williams, ‎J.C. and Lutjering, G.: Titanium (Springer, Berlin, Germany, 2003).Google Scholar
Webster, R.T.: ASM Handbook. Properties and Selection: Nonferrous Alloys and Special-Purpose Materials, Vol. 2 (ASM, Novelty, OH, 1990); p. 1328.Google Scholar
Schemel, J.H.: ASTM Manual on Zirconium and Hafnium (ASTM International, West Conshohocken, PA, 1977).Google Scholar
Sarkar, A., Boopathy, K., Eapen, J., and Murty, K.L.: Creep behavior of hydrogenated zirconium alloys. J. Mater. Eng. Perform. 23(10), 3649 (2014).Google Scholar
Murty, K.L. and Charit, I.: Texture development and anisotropic deformation of zircaloys. Prog. Nucl. Energy 48(4), 325 (2006).Google Scholar
Motta, A.T., Yilmazbayhan, A., Gomes da Silva, M.J., Comstock, R.J., Was, G.S., Busby, J.T., Gartner, E., Peng, Q., Jeong, Y.H., and Park, J.Y.: Zirconium alloys for supercritical water reactor applications: Challenges and possibilities. J. Nucl. Mater. 371(1–3), 61 (2007).Google Scholar
Alam, A.M. and Hellwig, C.: Cladding tube deformation test for stress reorientation of hydrides. In Zirconium in the Nuclear Industry: 15th International Symposium, Vol. 1505, ASTM International, West Conshohocken, PA, 2009; p. 635.Google Scholar
Lemaignan, C. and Motta, A.T.: Zirconium Alloys in Nuclear Applications (Wiley-VCH Verlag GmbH & Co. KGaA, 2006).Google Scholar
Kearns, J.J.: Terminal solubility and partitioning of hydrogen in the alpha phase of zirconium, zircaloy-2 and zircaloy-4. J. Nucl. Mater. 22(3), 292 (1967).Google Scholar
Kearns, J.J.: Dissolution kinetics of hydride platelets in zircaloy-4. J. Nucl. Mater. 27(1), 64 (1968).Google Scholar
Qin, W., Kiran Kumar, N.A.P., Szpunar, J.A., and Kozinski, J.: Intergranular δ-hydride nucleation and orientation in zirconium alloys. Acta Mater. 59(18), 7010 (2011).Google Scholar
Puls, M.P.: The effects of misfit and external stresses on terminal solid solubility in hydride-forming metals. Acta Metall. 29(12), 1961 (1981).Google Scholar
Puls, M.P.: Elastic and plastic accommodation effects on metal-hydride solubility. Acta Metall. 32(8), 1259 (1984).Google Scholar
Puls, M.P.: Review of the thermodynamic basis for models of delayed hydride cracking rate in zirconium alloys. J. Nucl. Mater. 393(2), 350 (2009).Google Scholar
Veleva, M., Arsene, S., Record, M., Bechade, J., and Bai, J.: Hydride embrittlement and irradiation effects on the hoop mechanical properties of pressurized water reactor (PWR) and boiling-water reactor (BWR) ZIRCALOY cladding tubes: Part II. Morphology of hydrides investigated at different magnifications and their interaction with the processes of plastic deformation. Metall. Mater. Trans. A 34(3), 567 (2003).Google Scholar
Arsene, S., Bai, J.B., and Bompard, P.: Hydride embrittlement and irradiation effects on the hoop mechanical properties of pressurized water reactor (PWR) and boiling-water reactor (BWR) ZIRCALOY cladding tubes: Part I. Hydride embrittlement in stress-relieved, annealed, and recrystallized ZIRCALOYs at 20 °C and 300 °C. Metall. Mater. Trans. A 34(3), 553 (2003).Google Scholar
Puls, M.: Fracture initiation at hydrides in zirconium. Metall. Trans. A 22(10), 2327 (1991).Google Scholar
Puls, M., Shi, S., and Rabier, J.: Experimental studies of mechanical properties of solid zirconium hydrides. J. Nucl. Mater. 336(1), 73 (2005).Google Scholar
Gu, X-F. and Zhang, W-Z.: A simple method for calculating the possible habit planes containing one set of dislocations and its applications to fcc/bct and hcp/bcc systems. Metall. Mater. Trans. A 45A(4), 1855 (2014).Google Scholar
Wang, Z., Garbe, U., Li, H., Studer, A.J., Harrison, R.P., Callaghan, M.D., Wang, Y., and Liao, X.: Hydrogen-induced microstructure, texture and mechanical property evolutions in a high-pressure torsion processed zirconium alloy. Scr. Mater. 67(9), 752 (2012).Google Scholar
Pilania, G., Thijsse, B.J., Hoagland, R.G., Lazic, I., Valone, S.M., and Liu, X.: Revisiting the Al/Al2O3 interface: Coherent interfaces and misfit accommodation. Sci. Rep. 4, 4485 (2014).Google Scholar
Porter, D.A., Easterling, K.E., and Sherif, M.: Phase Transformations in Metals and Alloys (CRC Press, Boca Raton, FL, 2009); 520 pp.Google Scholar
Abdolvand, H., Daymond, M.R., and Mareau, C.: Incorporation of twinning into a crystal plasticity finite element model: Evolution of lattice strains and texture in zircaloy-2. Int. J. Plast. 27(11), 1721 (2011).Google Scholar
Zikry, M.A.: An accurate and stable algorithm for high strain-rate finite strain plasticity. Comput. Struct. 50(3), 337 (1994).Google Scholar
Wu, Q., Shanthraj, P., and Zikry, M.A.: Modeling the heterogeneous effects of retained austenite on the behavior of martensitic high strength steels. Int. J. Fract. 184(1–2), 241 (2013).Google Scholar
Asaro, R.J. and Rice, J.R.: Strain localization in ductile single-crystals. J. Mech. Phys. Solids 50, 337 (1977).Google Scholar
Franciosi, P., Berveiller, M., and Zaoui, A.: Latent hardening in copper and aluminium single crystals. Acta Metall. 28(3), 273 (1980).Google Scholar
Devincre, B., Hoc, T., and Kubin, L.: Dislocation mean free paths and strain hardening of crystals. Science 320, 1745 (2008).Google Scholar
Kubin, L., Devincre, B., and Hoc, T.: Towards a physical model for strain hardening in fcc crystals. Mater. Sci. Eng., A 19, 483484 (2008).Google Scholar
Kubin, L., Devincre, B., and Hoc, T.: Modeling dislocation storage rates and mean free paths in face-centered cubic crystals. Acta Mater. 56(20), 6040 (2008).CrossRefGoogle Scholar
Zikry, M.A. and Kao, M.: Inelastic microstructural failure mechanisms in crystalline materials with high angle grain boundaries. J. Mech. Phys. Solids 44(11), 1765 (1996).Google Scholar
Shanthraj, P. and Zikry, M.A.: Dislocation density evolution and interactions in crystalline materials. Acta Mater. 59(20), 7695 (2011).Google Scholar
Zhang, M-X., Chen, S-Q., Ren, H-P., and Kelly, P.M.: Crystallography of the simple HCP/FCC system. Metall. Mater. Trans. A 39A(5), 1077 (2008).Google Scholar
Niewczas, M.: Lattice correspondence during twinning in hexagonal close-packed crystals. Acta Mater. 58(17), 5848 (2010).Google Scholar
Musienko, A. and Cailletaud, G.: Simulation of inter- and transgranular crack propagation in polycrystalline aggregates due to stress corrosion cracking. Acta Mater. 57(13), 3840 (2009).Google Scholar
Pouillier, E., Gourgues, A., Tanguy, D., and Busso, E.P.: A study of intergranular fracture in an aluminium alloy due to hydrogen embrittlement. Int. J. Plast. 34, 139 (2012).Google Scholar
Wu, Q. and Zikry, M.A.: Microstructural modeling of crack nucleation and propagation in high strength martensitic steels. Int. J. Solids Struct. 51(25–26), 4345 (2014).Google Scholar
Hansbo, A. and Hansbo, P.: A finite element method for the simulation of strong and weak discontinuities in solid mechanics. Comput. Methods Appl. Mech. Eng. 193(33–35), 3523 (2004).Google Scholar
Morris, J.W. Jr.: On the ductile-brittle transition in lath martensitic steel. ISIJ Int. 51(10), 1569 (2011).Google Scholar
Wang, C., Wang, M., Shi, J., Hui, W., and Dong, H.: Effect of microstructural refinement on the toughness of low carbon martensitic steel. Scr. Mater. 58(6), 492 (2008).Google Scholar
Chen, C.Q., Li, S.X., Zheng, H., Wang, L.B., and Lu, K.: An investigation on structure, deformation and fracture of hydrides in titanium with a large range of hydrogen contents. Acta Mater. 52(12), 3697 (2004).Google Scholar
Arsene, S., Bai, J., and Bompard, P.: Hydride embrittlement and irradiation effects on the hoop mechanical properties of pressurized water reactor (PWR) and boiling-water reactor (BWR) ZIRCALOY cladding tubes: Part III. Mechanical behavior of hydride in stress-relieved annealed and recrystallized ZIRCALOYs at 20 °C and 300 °C. Metall. Mater. Trans. A 34(3), 579 (2003).Google Scholar
Kubo, T., Kobayashi, Y., and Uchikoshi, H.: Determination of fracture strength of δ-zirconium hydrides embedded in zirconium matrix at high temperatures. J. Nucl. Mater. 435(1–3), 222 (2013).Google Scholar
Rico, A., Martin-Rengel, M.A., Ruiz-Hervias, J., Rodriguez, J., and Gomez-Sanchez, F.J.: Nanoindentation measurements of the mechanical properties of zirconium matrix and hydrides in unirradiated pre-hydrided nuclear fuel cladding. J. Nucl. Mater. 452(1–3), 69 (2014).Google Scholar
Kuroda, M., Yoshioka, K., Yamanaka, S., Anada, H., Nagase, F., and Uetsuka, H.: Influence of precipitated hydride on the fracture behavior of zircaloy fuel cladding tube. J. Nucl. Sci. Technol. 37(8), 670 (2000).Google Scholar
Mareau, C. and Daymond, M.R.: Comparison of experimentally determined texture development in zircaloy-2 with predictions from a rate-dependent polycrystalline model. Mater. Sci. Eng., A 528(29–30), 8676 (2011).Google Scholar
Hofman, D.C. and Lubarda, V.A.: New method for determining hexagonal direction indices and their relationship to crystallographic directions. J. Appl. Crystallogr. 36(1), 23 (2003).Google Scholar
Une, K., Nogita, K., Ishimoto, S., and Ogata, K.: Crystallography of zirconium hydrides in recrystallized zircaloy-2 fuel cladding lay electron backscatter diffraction. J. Nucl. Sci. Technol. 41(7), 731 (2004).Google Scholar
Perovic, V. and Weatherly, G.C.: The β to α transformation in a Zr-2.5 wt% Nb alloy. Acta Metall. 37(3), 813 (1989).Google Scholar
Tournadre, L., Onimus, F., Béchade, J-L., Gilbon, D., Cloué, J-M., Mardon, J-P., and Feaugas, X.: Toward a better understanding of the hydrogen impact on the radiation induced growth of zirconium alloys. J. Nucl. Mater. 441(1–3), 222 (2013).Google Scholar
Yoo, M.H., Agnew, S.R., Morris, J.R., and Ho, K.M.: Non-basal slip systems in HCP metals and alloys: Source mechanisms. Mater. Sci. Eng., A 319321, 87 (2001).Google Scholar