Hostname: page-component-cd9895bd7-dk4vv Total loading time: 0 Render date: 2024-12-23T12:08:27.818Z Has data issue: false hasContentIssue false

Organic-ligand-assisted hydrothermal synthesis of ultrafine and hydrophobic ZnO nanoparticles

Published online by Cambridge University Press:  31 January 2011

Seiichi Takami
Affiliation:
Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai 980-8577, Japan
Tadafumi Adschiri*
Affiliation:
WPI, Advanced Institute for Materials Research, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai 980-8577, Japan
*
a)Address all correspondence to this author. e-mail: [email protected]
Get access

Abstract

In this study, we report the synthesis of uniform and narrowly size-distributed ZnO nanoparticles with sizes of approximately 3 nm; the nanoparticles were prepared by means of organic-ligand-assisted hydrothermal conditions with various organic modifiers. The results obtained herein revealed that among the various functional groups tested (alcohols, aldehydes, carboxylic acids, and amines), only hexanol effectively controlled the nucleation and crystal growth of spherical ZnO nanoparticles. The use of hexanol also caused the surface of the ZnO particles to change from hydrophilic to hydrophobic, which would enhance the dispersion of these particles in polymer matrices, paints, cosmetics, and other organic application media.

Type
Articles
Copyright
Copyright © Materials Research Society 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Khrenov, V., Klapper, M., Koch, M., Müllen, K.Surface functionalized ZnO particles designed for the use in transparent nanocomposites. Macromol. Chem. Phys. 206, 95 (2005)CrossRefGoogle Scholar
2.Pal, U., Santiago, P.Controlling the morphology of ZnO nanostructures in a low-temperature hydrothermal process. J. Phys. Chem. B 109, 15317 (2005)CrossRefGoogle Scholar
3.Kim, H., Sigmund, W.ZnO nanocrystals synthesized by physical vapor desposition. J. Nanosci. Nanotechnol. 4, (3)275 (2004)CrossRefGoogle Scholar
4.Viswanathan, R., Gupta, R.B.Formation of zinc oxide nanoparticles in supercritical water. J. Supercrit. Fluids 27, 187 (2003)CrossRefGoogle Scholar
5.Laundon, R. D.Synthesis of ZnO particles. U.S. Patent No. 5 876 688, March 2 1999Google Scholar
6.Althues, H., Simon, P., Philipp, F., Kaskel, S.Integration of zinc oxide nanoparticles into transparent poly(butanediolmonoacrylate) via photopolymerization. J. Nanosci. Nanotechnol. 6, 409 (2006)CrossRefGoogle Scholar
7.Zhang, H., Yang, D., Ji, Y., Ma, X., Xu, J., Que, D.Low temperature synthesis of flowerlike ZnO nanostructures by cetyltrimethylammonium bromide-assisted hydrothermal process. J. Phys. Chem. B 108, (13)3955 (2004)CrossRefGoogle Scholar
8.Wu, Y-L., Tok, A.I.Y., Boey, F.Y.C., Zeng, X.T., Zhang, X.H.Surface modification of ZnO nanocrystals. Appl. Surf. Sci. 253, 5473 (2007)CrossRefGoogle Scholar
9.Tang, L., Zhou, B., Tian, Y., Sun, F., Li, Y., Wang, Z.Synthesis and surface hydrophobic functionalization of ZnO nanocrystals via a facile one-step solution method. Chem. Eng. J. 139, 642 (2008)CrossRefGoogle Scholar
10.Hong, R., Pan, T., Qian, J., Li, H.Synthesis and surface modification of ZnO nanoparticles. Chem. Eng. J. 119, 71 (2006)CrossRefGoogle Scholar
11.Singh, P., Kumar, A., Kaushal, A., Kaur, D., Pandey, A., Goyal, R.N.Influence of minor elements additions on microstructure and properties of 93W-4·9Ni-2·1Fe alloys. Bull. Mater. Sci. 31, 573 (2008)CrossRefGoogle Scholar
12.Ohara, S., Mousavand, T., Umetsu, M., Takami, S., Adschiri, T., Kuroki, Y., Takata, M.Hydrothermal synthesis of fine zinc oxide particles under supercritical conditions. Solid State Ionics 172, 261 (2004)CrossRefGoogle Scholar
13.Sue, K., Kimura, K., Murata, K., Arai, K.Effect of cations and anions on properties of zinc oxide particles synthesized in supercritical water. J. Supercrit. Fluids 30, 325 (2004)CrossRefGoogle Scholar
14.Liu, B., Zeng, H.C.Hydrothermal synthesis of ZnO nanorods in the diameter regime of 50 nm. J. Am. Chem. Soc. 125, 4430 (2003)CrossRefGoogle ScholarPubMed
15.Mousavand, T., Takami, S., Umetsu, M., Ohara, S., Adschiri, T.Supercritical hydrothermal synthesis of organic-inorganic hybrid nanoparticles. J. Mater. Sci. 41, 1445 (2006)CrossRefGoogle Scholar
16.Ohara, S., Mousavand, T., Sasaki, T., Umetsu, M., Naka, T., Adschiri, T.Continuous production of fine zinc oxide nanorods by hydrothermal synthesis in supercritical water. J. Mater. Sci. 43, 2393 (2008)CrossRefGoogle Scholar
17.Zhang, J., Ohara, S., Umetsu, M., Naka, T., Hatakeyama, T.Y., Adschiri, T.Colloidal ceria nanocrystals: A tailor-made crystal morphology in supercritical water. Adv. Mater. 19, 203 (2007)CrossRefGoogle Scholar
18.Mousavand, T., Ohara, S., Umetsu, M., Zhang, J., Takami, S., Naka, T., Adschiri, T.Hydrothermal synthesis and in situ surface modification of boehmite nanoparticles in supercritical water. J. Supercrit. Fluids 40, 397 (2007)CrossRefGoogle Scholar
19.Mousavand, T., Zhang, J., Ohara, S., Umetsu, M., Naka, T., Adschiri, T.Organic-ligand-assisted supercritical hydrothermal synthesis of titanium oxide nanocrystals leading to perfectly dispersed titanium oxide nanoparticle in organic phase. J. Nanopart. Res. 6, 1067 (2007)CrossRefGoogle Scholar
20.Marqusee, J.A., Ross, J.Kinetics of phase transitions: Theory of Ostwald ripening. J. Chem. Phys. 79, 373 (1983)CrossRefGoogle Scholar
21.Mousavand, T., Naka, T., Ohara, S., Adschiri, T. Optimization and reaction mechanism of in situ surface modification of metal oxide nanoparticles. ( in preparation )Google Scholar