Hostname: page-component-745bb68f8f-b95js Total loading time: 0 Render date: 2025-01-24T14:45:53.804Z Has data issue: false hasContentIssue false

Ordering and decomposition in semiconductor alloys

Published online by Cambridge University Press:  31 January 2011

José Luís Martins
Affiliation:
Solar Energy Research Institute, Golden, Colorado 80401
Alex Zunger
Affiliation:
Solar Energy Research Institute, Golden, Colorado 80401
Get access

Abstract

The stability of ordered semiconductor alloys has been studied, using total energy pseudopotential calculations. The ordered alloys are found to be stabilized with respect to disordered alloys via reduction of the internal strain and by chemical interactions. The Si–C and Si–Ge systems are used as illustrations, finding that ordered Six Ge1−x should be a metastable alloy, in agreement with experimental observations.

Type
Materials Communications
Copyright
Copyright © Materials Research Society 1986

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1Panish, M. B. and Ilegems, M., Prog. Solid State Chem. 7, 39 (1972); F. Rosenberger, in Cohesive Properties of Semiconductors Under Laser Irradiation, edited by L. D. Laude (NijhoffJheHauge, 1983), p. 128; G. B. Stringfellow, J. Phys. Chem. Solids 34, 1749 (1973); 33, 665 (1972).Google Scholar
2Srivastava, G. P., Martins, J. L., and Zunger, A., Phys. Rev. B 31, 2561 (1985).Google Scholar
3Kuan, T. S., Kuech, T. F., Wang, W. I., and Wilkie, E. L., Phys. Rev. Lett. 54, 201 (1985).Google Scholar
4Ourmazd, A. and Bean, J. C., Phys. Rev. Lett. 55, 765 (1985).Google Scholar
5Stringfellow, G. B., J. Cryst. Growth 27, 21 (1974).CrossRefGoogle Scholar
6Vechten, J. Van, in Semiconductor Handbook, edited by Keller, S. P. (North-Holland, Amsterdam, 1980), Vol. 3, p. 1.Google Scholar
7Fedden, P. A. and Muller, M. W., J. Phys. Chem. Solids 45, 685 (1984).Google Scholar
7Vegard, L., Z. Phys. 5, 17 (1921).Google Scholar
9Wagman, D. D., Evans, W. H, Halow, I., Parker, V. B., Bailey, S. M., and Shumm, R. H., National Bureau of Standards Technical Note 270 (United States Government Printing Office, Washington, DC, 1968).Google Scholar
10Martins, J. L. and Zunger, A., Phys. Rev. B 30, 6217 (1984).CrossRefGoogle Scholar
11Gratton, M. F., Goodchild, R. G., Juravel, L. Y., and Woolley, J. C., J. Elect. Mater. 8, 25 (1979).Google Scholar
12Ihm, J., Zunger, A., and Cohen, M. L., J. Phys. C 12, 4409 (1979).CrossRefGoogle Scholar
13Landau, L. D. and Lifshitz, E. M., Siatisticul Physics (Pergamon, Oxford, 1969) Chap. 14.Google Scholar
14Khachaturyan, A. G., Theory of Structural Transformations in Solids (Wiley, New York, 1983),Google Scholar
l5Stringfellow, G. B., J. Elec. Mater. 11, 903 (1982).Google Scholar
16Martins, J. L. and Zunger, A., Phys. Rev. Lett. 56, 1400 (1986).Google Scholar