Hostname: page-component-586b7cd67f-r5fsc Total loading time: 0 Render date: 2024-11-22T18:49:35.211Z Has data issue: false hasContentIssue false

Optimized ALD-derived MgO coating layers enhancing silicon anode performance for lithium ion batteries

Published online by Cambridge University Press:  14 May 2019

Xia Tai
Affiliation:
Tianjin International Joint Research Centre of Surface Technology for Energy Storage Materials, College of Physics and Materials Science, Tianjin Normal University, Tianjin 300387, China
Xifei Li*
Affiliation:
Tianjin International Joint Research Centre of Surface Technology for Energy Storage Materials, College of Physics and Materials Science, Tianjin Normal University, Tianjin 300387, China; and Institute of Advanced Electrochemical Energy & School of Materials Science and Engineering, Xi’an University of Technology, Xi’an, Shaanxi 710048, China
Alibek Kakimov
Affiliation:
Institute of Advanced Electrochemical Energy & School of Materials Science and Engineering, Xi’an University of Technology, Xi’an, Shaanxi 710048, China
Shiyu Li*
Affiliation:
Institute of Advanced Electrochemical Energy & School of Materials Science and Engineering, Xi’an University of Technology, Xi’an, Shaanxi 710048, China
Wen Liu
Affiliation:
Institute of Advanced Electrochemical Energy & School of Materials Science and Engineering, Xi’an University of Technology, Xi’an, Shaanxi 710048, China
Jianwei Li*
Affiliation:
Institute of Advanced Electrochemical Energy & School of Materials Science and Engineering, Xi’an University of Technology, Xi’an, Shaanxi 710048, China
Jie Xu
Affiliation:
Tianjin International Joint Research Centre of Surface Technology for Energy Storage Materials, College of Physics and Materials Science, Tianjin Normal University, Tianjin 300387, China
Dejun Li*
Affiliation:
Tianjin International Joint Research Centre of Surface Technology for Energy Storage Materials, College of Physics and Materials Science, Tianjin Normal University, Tianjin 300387, China
Xueliang Sun
Affiliation:
Tianjin International Joint Research Centre of Surface Technology for Energy Storage Materials, College of Physics and Materials Science, Tianjin Normal University, Tianjin 300387, China; Institute of Advanced Electrochemical Energy & School of Materials Science and Engineering, Xi’an University of Technology, Xi’an, Shaanxi 710048, China; and Nanomaterials and Energy Lab, Department of Mechanical and Materials Engineering, Western University London, Ontario N6A 5B9, Canada
*
a)Address all correspondence to this author. e-mail: [email protected]
Get access

Abstract

In this work, atomic layer deposition (ALD), as a novel strategy, has been applied to deposit MgO on nano-sized porous Si (pSi) dendrites obtained by etching Al–Si alloy for LIBs. The reversible specific capacity of pSi@MgO electrode is 969.4 mA h/g after 100 cycles at 100 mA/g between 0.01 and 1.5 V, and it presents the discharge specific capacities of 1253.0, 885.5, 642.4, 366.2, and 101.4 mA h/g at 100, 500, 1000, 2000, and 5000 mA/g, respectively. What is more, it delivers a high reversible capacity of 765.1 mA h/g even at 500 mA/g after 200 cycles. The performance improvement can be attributed to the protection of the MgO layer and built-in space of porous Si for volume expansion upon cycling. These results illustrate that ALD derived coating is a powerful strategy to enhance electrical properties of anode materials with huge volume change for lithium-ion batteries.

Type
Article
Copyright
Copyright © Materials Research Society 2019 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Ding, Y., Cano, Z.P., Yu, A., Lu, J., and Chen, Z.: Automotive Li-ion batteries: Current status and future perspectives. Electrochem. Energy Rev. 2, 1 (2019).CrossRefGoogle Scholar
Yao, K., Zheng, J.P., and Liang, Z.: Binder-free freestanding flexible Si nanoparticle–multi-walled carbon nanotube composite paper anodes for high energy Li-ion batteries. J. Mater. Res. 33, 482 (2018).CrossRefGoogle Scholar
Zhang, W-M., Hu, J-S., Guo, Y-G., Zheng, S-F., Zhong, L-S., Song, W-G., and Wan, L-J.: Tin-nanoparticles encapsulated in elastic hollow carbon spheres for high-performance anode material in lithium-ion batteries. Adv. Mater. 20, 1160 (2008).CrossRefGoogle Scholar
Liang, Y., Tian, H., Repac, J., Liou, S-C., Chen, J., Han, W., Wang, C., and Ehrman, S.: Colloidal spray pyrolysis: A new fabrication technology for nanostructured energy storage materials. Energy Storage Mater. 13, 8 (2018).CrossRefGoogle Scholar
Tian, H., Liang, Y., Repac, J., Zhang, S., Luo, C., Liou, S-C., Wang, G., Ehrman, S.H., and Han, W.: Rational design of core–shell-structured particles by a one-step and template-free process for high-performance lithium/sodium-ion batteries. J. Phys. Chem. C 122, 22232 (2018).CrossRefGoogle Scholar
Zhang, W-J.: A review of the electrochemical performance of alloy anodes for lithium-ion batteries. J. Power Sources 196, 13 (2011).CrossRefGoogle Scholar
Obrovac, M.N. and Chevrier, V.L.: Alloy negative electrodes for Li-ion batteries. Chem. Rev. 114, 11444 (2014).CrossRefGoogle ScholarPubMed
Magasinski, A., Dixon, P., Hertzberg, B., Kvit, A., Ayala, J., and Yushin, G.: High-performance lithium-ion anodes using a hierarchical bottom-up approach. Nat. Mater. 9, 353 (2010).CrossRefGoogle ScholarPubMed
Wu, H. and Cui, Y.: Designing nanostructured Si anodes for high energy lithium ion batteries. Nano Today 7, 414 (2012).CrossRefGoogle Scholar
Liang, B., Liu, Y., and Xu, Y.: Silicon-based materials as high capacity anodes for next generation lithium ion batteries. J. Power Sources 267, 469 (2014).CrossRefGoogle Scholar
Tian, H., Xin, F., Wang, X., He, W., and Han, W.: High capacity group-IV elements (Si, Ge, Sn) based anodes for lithium-ion batteries. J. Materiomics 1, 153 (2015).CrossRefGoogle Scholar
Mishra, K., Liu, X-C., Geppert, M., Wu, J.J., Li, J-T., Huang, L., Sun, S-G., Zhou, X-D., and Ke, F-S.: Submicro-sized Si–Ge solid solutions with high capacity and long cyclability for lithium-ion batteries. J. Mater. Res. 33, 1553 (2018).CrossRefGoogle Scholar
Kovalenko, I., Zdyrko, B., Magasinski, A., Hertzberg, B., Milicev, Z., Burtovyy, R., Luzinov, I., and Yushin, G.: A major constituent of brown algae for use in high-capacity Li-ion batteries. Science 334, 75 (2011).CrossRefGoogle Scholar
Jung, D.S., Ryou, M.H., Sung, Y.J., Park, S.B., and Choi, J.W.: Recycling rice husks for high-capacity lithium battery anodes. Proc. Natl. Acad. Sci. U. S. A. 110, 12229 (2013).CrossRefGoogle ScholarPubMed
Zhao, Y., Zheng, L., Wu, H., Chen, H., Su, L., Wang, L., Wang, Y., and Ren, M.: Co2SiO4/SiO2/RGO nanosheets: Boosting the lithium storage capability of tetravalent Si by using highly-dispersed Co element. Electrochim. Acta 282, 609 (2018).CrossRefGoogle Scholar
Dou, F., Shi, L., Chen, G., and Zhang, D.: Silicon/carbon composite anode materials for lithium-ion batteries. Electrochem. Energy Rev. 2, 149 (2019).CrossRefGoogle Scholar
Zhu, B., Jin, Y., Tan, Y., Zong, L., Hu, Y., Chen, L., Chen, Y., Zhang, Q., and Zhu, J.: Scalable production of Si nanoparticles directly from low grade sources for lithium-ion battery anode. Nano Lett. 15, 5750 (2015).CrossRefGoogle ScholarPubMed
Song, H., Wang, H.X., Lin, Z., Jiang, X., Yu, L., Xu, J., Yu, Z., Zhang, X., Liu, Y., He, P., Pan, L., Shi, Y., Zhou, H., and Chen, K.: Highly connected silicon-copper alloy mixture nanotubes as high-rate and durable anode materials for lithium-ion batteries. Adv. Funct. Mater. 26, 524 (2016).CrossRefGoogle Scholar
Lu, Z., Liu, N., Lee, H.W., Zhao, J., Li, W., Li, Y., and Cui, Y.: Nonfilling carbon coating of porous silicon micrometer-sized particles for high-performance lithium battery anodes. ACS Nano 9, 2540 (2015).CrossRefGoogle ScholarPubMed
Wang, C., Wu, H., Chen, Z., McDowell, M.T., Cui, Y., and Bao, Z.: Self-healing chemistry enables the stable operation of silicon microparticle anodes for high-energy lithium-ion batteries. Nat. Chem. 5, 1042 (2013).CrossRefGoogle ScholarPubMed
Zhao, H., Du, A., Ling, M., Battaglia, V., and Liu, G.: Conductive polymer binder for nano-silicon/graphite composite electrode in lithium-ion batteries towards a practical application. Electrochim. Acta 209, 159 (2016).CrossRefGoogle Scholar
Tian, H., Tan, X., Xin, F., Wang, C., and Han, W.: Micro-sized nano-porous Si/C anodes for lithium ion batteries. Nano Energy 11, 490 (2015).CrossRefGoogle Scholar
Park, M.H., Kim, M.G., Joo, J., Kim, K., Kim, J., Ahn, S., Cui, Y., and Cho, J.: Silicon nanotube battery anodes. Nano Lett. 9, 3844 (2009).CrossRefGoogle ScholarPubMed
Liu, N., Hu, L.B., McDowell, M.T., Jackson, A., and Cui, Y.: Prelithiated silicon nanowires as an anode for lithium ion batteries. ACS Nano 5, 6487 (2011).CrossRefGoogle ScholarPubMed
Bao, W., Wang, J., Chen, S., Li, W., Su, Y., Wu, F., Tan, G., and Lu, J.: A three-dimensional hierarchical structure of cyclized-PAN/Si/Ni for mechanically stable silicon anodes. J. Mater. Chem. A 5, 24667 (2017).CrossRefGoogle Scholar
Yi, R., Dai, F., Gordin, M.L., Chen, S., and Wang, D.: Micro-sized Si–C composite with interconnected nanoscale building blocks as high-performance anodes for practical application in lithium-ion batteries. Adv. Energy Mater. 3, 295 (2013).CrossRefGoogle Scholar
Zhang, D., Xu, Y., Feng, G., Huang, Y-R., and Lee, D.: Comparing sintering and atomic layer deposition as methods to mechanically reinforce nanocolloidal crystals. J. Mater. Res. 30, 3717 (2015).CrossRefGoogle Scholar
Luo, C., Zhu, H., Luo, W., Shen, F., Fan, X., Dai, J., Liang, Y., Wang, C., and Hu, L.: Atomic-layer-deposition functionalized carbonized mesoporous wood fiber for high sulfur loading lithium sulfur batteries. ACS Appl. Mater. Interfaces 9, 14801 (2017).CrossRefGoogle ScholarPubMed
Hwang, G., Park, H., Bok, T., Choi, S., Lee, S., Hwang, I., Choi, N.S., Seo, K., and Park, S.: A high-performance nanoporous Si/Al2O3 foam lithium-ion battery anode fabricated by selective chemical etching of the Al–Si alloy and subsequent thermal oxidation. Chem. Commun. 51, 4429 (2015).CrossRefGoogle ScholarPubMed
Wang, J., Zhou, Y., Hu, Y., O’Hayre, R., and Shao, Z.: Facile synthesis of nanocrystalline TiO2 mesoporous microspheres for lithium-ion batteries. J. Phys. Chem. C 115, 2529 (2011).CrossRefGoogle Scholar
Hong, Z., Wei, M., Lan, T., Jiang, L., and Cao, G.: Additive-free synthesis of unique TiO2 mesocrystals with enhanced lithium-ion intercalation properties. Energy Environ. Sci. 5, 5408 (2012).CrossRefGoogle Scholar
Petkovich, N.D., Rudisill, S.G., Wilson, B.E., Mukherjee, A., and Stein, A.: Control of TiO2 grain size and positioning in three-dimensionally ordered macroporous TiO2/C composite anodes for lithium ion batteries. Inorg. Chem. 53, 1100 (2014).CrossRefGoogle ScholarPubMed
Savvides, N. and Window, B.: Electrical transport, optical properties, and structure of TiN films synthesized by low-energy ion assisted deposition. J. Appl. Phys. 64, 225 (1988).CrossRefGoogle Scholar
Dong, S., Chen, X., Gu, L., Zhou, X., Li, L., Liu, Z., Han, P., Xu, H., Yao, J., Wang, H., Zhang, X., Shang, C., Cui, G., and Chen, L.: One dimensional MnO2/titanium nitride nanotube coaxial arrays for high performance electrochemical capacitive energy storage. Energy Environ. Sci. 4, 3502 (2011).CrossRefGoogle Scholar
Kohandehghan, A., Kalisvaart, P., Cui, K., Kupsta, M., Memarzadeh, E., and Mitlin, D.: Silicon nanowire lithium-ion battery anodes with ALD deposited TiN coatings demonstrate a major improvement in cycling performance. J. Mater. Chem. A 1, 12850 (2013).CrossRefGoogle Scholar
Bok, T., Choi, S., Lee, J., and Park, S.: Effective strategies for improving the electrochemical properties of highly porous Si foam anodes in lithium-ion batteries. J. Mater. Chem. A 2, 14195 (2014).CrossRefGoogle Scholar
Liu, N., Lu, Z., Zhao, J., McDowell, M.T., Lee, H.W., Zhao, W., and Cui, Y.: A pomegranate-inspired nanoscale design for large-volume-change lithium battery anodes. Nat. Nanotechnol. 9, 187 (2014).CrossRefGoogle ScholarPubMed
Riley, L.A., Van Atta, S., Cavanagh, A.S., Yan, Y., George, S.M., Liu, P., Dillon, A.C., and Lee, S-H.: Electrochemical effects of ALD surface modification on combustion synthesized LiNi1/3Mn1/3Co1/3O2 as a layered-cathode material. J. Power Sources 196, 3317 (2011).CrossRefGoogle Scholar
Scott, I.D., Jung, Y.S., Cavanagh, A.S., Yan, Y., Dillon, A.C., George, S.M., and Lee, S.H.: Ultrathin coatings on nano-LiCoO2 for Li-ion vehicular applications. Nano Lett. 11, 414 (2011).CrossRefGoogle ScholarPubMed
Li, X., Liu, J., Banis, M.N., Lushington, A., Li, R., Cai, M., and Sun, X.: Atomic layer deposition of solid-state electrolyte coated cathode materials with superior high-voltage cycling behavior for lithium ion battery application. Energy Environ. Sci. 7, 768 (2014).CrossRefGoogle Scholar
Wang, X., Guo, Z., Gao, Y., and Wang, J.: Atomic layer deposition of vanadium oxide thin films from tetrakis(dimethylamino)vanadium precursor. J. Mater. Res. 32, 37 (2016).CrossRefGoogle Scholar
Bai, Y., Yan, D., Yu, C., Cao, L., Wang, C., Zhang, J., Zhu, H., Hu, Y-S., Dai, S., Lu, J., and Zhang, W.: Core–shell Si@TiO2 nanosphere anode by atomic layer deposition for Li-ion batteries. J. Power Sources 308, 75 (2016).CrossRefGoogle Scholar
Kou, H., Li, X., Shan, H., Fan, L., Yan, B., and Li, D.: An optimized Al2O3 layer for enhancing the anode performance of NiCo2O4 nanosheets for sodium-ion batteries. J. Mater. Chem. A 5, 17881 (2017).CrossRefGoogle Scholar
Li, X., Chen, Q., McCue, I., Snyder, J., Crozier, P., Erlebacher, J., and Sieradzki, K.: Dealloying of noble-metal alloy nanoparticles. Nano Lett. 14, 2569 (2014).CrossRefGoogle ScholarPubMed
Feng, J., Zhang, Z., Li, L., Yang, J., Xiong, S., and Qian, Y.: Ether-based nonflammable electrolyte for room temperature sodium battery. J. Power Sources 284, 222 (2015).CrossRefGoogle Scholar
Kim, J.S., Pfleging, W., Kohler, R., Seifert, H.J., Kim, T.Y., Byun, D., Jung, H-G., Choi, W., and Lee, J.K.: Three-dimensional silicon/carbon core–shell electrode as an anode material for lithium-ion batteries. J. Power Sources 279, 13 (2015).CrossRefGoogle Scholar
Xin, X., Zhou, X., Wang, F., Yao, X., Xu, X., Zhu, Y., and Liu, Z.: A 3D porous architecture of Si/graphene nanocomposite as high-performance anode materials for Li-ion batteries. J. Mater. Chem. 22, 7724 (2012).CrossRefGoogle Scholar
Zhou, X., Han, K., Jiang, H., Liu, Z., Zhang, Z., Ye, H., and Liu, Y.: High-rate and long-cycle silicon/porous nitrogen-doped carbon anode via a low-cost facile pre-template-coating approach for Li-ion batteries. Electrochim. Acta 245, 14 (2017).CrossRefGoogle Scholar
Sun, X., Si, W., Liu, X., Deng, J., Xi, L., Liu, L., Yan, C., and Schmidt, O.G.: Multifunctional Ni/NiO hybrid nanomembranes as anode materials for high-rate Li-ion batteries. Nano Energy 9, 168 (2014).CrossRefGoogle Scholar
Zhou, Y., Guo, H., Yan, G., Wang, Z., Li, X., Yang, Z., Zheng, A., and Wang, J.: Fluidized bed reaction towards crystalline embedded amorphous Si anode with much enhanced cycling stability. Chem. Commun. 54, 3755 (2018).CrossRefGoogle ScholarPubMed
Qi, Y., Zhang, C., Liu, S., Zong, Y., and Men, Y.: Room-temperature synthesis of ZnO@GO nanocomposites as anode for lithium-ion batteries. J. Mater. Res. 33, 1506 (2018).CrossRefGoogle Scholar
Chan, K.S., Miller, M.A., Liang, W., Ellis-Terrell, C., and Chan, C.K.: First principles and experimental studies of empty Si46 as anode materials for Li-ion batteries. J. Mater. Res. 31, 3657 (2016).CrossRefGoogle Scholar
Lu, J., Chen, Z., Pan, F., Cui, Y., and Amine, K.: High-performance anode materials for rechargeable lithium-ion batteries. Electrochem. Energy Rev. 1, 35 (2018).CrossRefGoogle Scholar
Li, X., Liu, J., Meng, X., Tang, Y., Banis, M.N., Yang, J., Hu, Y., Li, R., Cai, M., and Sun, X.: Significant impact on cathode performance of lithium-ion batteries by precisely controlled metal oxide nanocoatings via atomic layer deposition. J. Power Sources 247, 57 (2014).CrossRefGoogle Scholar
Supplementary material: File

Tai et al. supplementary material

Figure S1

Download Tai et al. supplementary material(File)
File 64.5 KB