Hostname: page-component-78c5997874-lj6df Total loading time: 0 Render date: 2024-11-19T07:26:12.160Z Has data issue: false hasContentIssue false

Optical properties of transparent alkali gallium silicate glass-ceramics containing Ni2+-doped β-Ga2O3 nanocrystals

Published online by Cambridge University Press:  31 January 2011

Botao Wu
Affiliation:
State Key Laboratory of High Field Laser Physics, Shanghai Institute of Optics and Fine Mechanics, Shanghai 201800, China; and Graduate School of Chinese Academy of Sciences, Beijing 100039, China
Jianrong Qiu*
Affiliation:
State Key Laboratory of Silicon Materials, Zhejiang University, Hangzhou 310027, China
Nan Jiang
Affiliation:
Department of Physics and Astronomy, Arizona State University, Tempe, Arizona 85287-1504
Shifeng Zhou
Affiliation:
State Key Laboratory of Silicon Materials, Zhejiang University, Hangzhou 310027, China
Jinjun Ren
Affiliation:
State Key Laboratory of High Field Laser Physics, Shanghai Institute of Optics and Fine Mechanics, Shanghai 201800, China; and Graduate School of Chinese Academy of Sciences, Beijing 100039, China
Danping Chen
Affiliation:
State Key Laboratory of High Field Laser Physics, Shanghai Institute of Optics and Fine Mechanics, Shanghai 201800, China
Xiongwei Jiang
Affiliation:
State Key Laboratory of High Field Laser Physics, Shanghai Institute of Optics and Fine Mechanics, Shanghai 201800, China
Congshan Zhu
Affiliation:
State Key Laboratory of High Field Laser Physics, Shanghai Institute of Optics and Fine Mechanics, Shanghai 201800, China
*
a)Address all correspondence to this author.e-mail: [email protected]
Get access

Abstract

Broadband near-infrared (IR) luminescence in transparent alkali gallium silicate glass-ceramics containing Ni2+-doped β-Ga2O3 nanocrystals was observed. This broadband emission could be attributed to the 3T2g (3F) → 3A2g (3F) transition of octahedral Ni2+ ions in glass-ceramics. The full width at half-maximum (FWHM) of the near-IR luminescence and fluorescent lifetime of the glass-ceramic doped with 0.10 mol% NiO were 260 nm and ∼1220 μs, respectively. It is expected that transparent Ni2+-doped β-Ga2O3 glass-ceramics with this broad near-IR emission and long fluorescent lifetime have potential applications as super-broadband optical amplification media.

Type
Articles
Copyright
Copyright © Materials Research Society 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Sakamoto, T., Shimizu, M., Kanamori, T., Terunuma, Y., Ohishi, Y., Yamada, M.Sudo, S.: 1.4-μm-band gain characteristics of a Tm–Ho-doped ZBLYAN fiber amplifier pumped in the 0.8-μm band. IEEE Photonics Technol. Lett. 7, 983 1995CrossRefGoogle Scholar
2Yamada, M., Ono, H.Ohishi, Y.: Low-noise, broadband Er3+-doped silica fibre amplifiers. Electron. Lett. 34, 1490 1998Google Scholar
3Tanabe, S.Feng, X.: Temperature variation of near-infrared emission from Cr4+ in aluminate glass for broadband telecommunication. Appl. Phys. Lett. 7, 818 2000CrossRefGoogle Scholar
4Pinckney, L.R.Beall, G.H.: Transition element-doped crystals in glasses. Proc. SPIE,4452, 93 2001Google Scholar
5Sharonov, M.Y., Bykov, A.B., Owen, S., Petricevic, V.Alfano, R.R.: Spectroscopic study of transparent forsterite glass-ceramics doped with chromium. J. Opt. Soc. Am. B 21, 2046 2004CrossRefGoogle Scholar
6Moulton, P.F.Mooradian, A.: Broadly tunable cw operation of Ni:MgF2 and Co:MgF2 lasers. Appl. Phys. Lett. 35, 838 1979Google Scholar
7Iverson, M.V., Windscheif, J.C.Sibley, W.A.: Optical parameters for the MgO:Ni2+ laser system. Appl. Phys. Lett. 36, 183 1980CrossRefGoogle Scholar
8Johnson, L.F., Guggenheim, H.J.Bahnck, D.: Phonon-terminated laser emission from Ni2+ ions in KMgF3. Opt. Lett. 8, 371 1983CrossRefGoogle ScholarPubMed
9Donegan, J.F., Bergin, F.J., Glynn, T.J., Imbush, G.F.Remeika, J.P.: The optical spectroscopy of LiGa5O8:Ni2+. J. Lumin. 35, 57 1986Google Scholar
10Suzuki, T., Murugan, G.S.Ohishi, Y.: Spectroscopic properties of a novel near-infrared tunable laser material Ni:MgGa2O4. J. Lumin. 113, 265 2005CrossRefGoogle Scholar
11Samson, B.N., Pinckney, L.R., Wang, J., Beall, G.H.Borrelli, N.F.: Nickel-doped nanocrystalline glass-ceramics fiber. Opt. Lett. 27, 1309 2002CrossRefGoogle Scholar
12Suzuki, T., Murugan, G.S.Ohishi, Y.: Optical properties of transparent Li2O–Ga2O3–SiO2 glass-ceramics embedding Ni-doped nanocrystals. Appl. Phys. Lett. 86, 131903 2005CrossRefGoogle Scholar
13Lipinska-Kalita, K.E., Krol, D.M., Hemley, R.J., Kalita, P.E., Gobin, C.L.Ohki, Y.: Temperature effects on luminescence properties of Cr3+ ions in alkali gallium silicate nanostructure media. J. Appl. Phys. 98, 054302 2005CrossRefGoogle Scholar
14Geller, S.: Crystal structure of β-Ga2O3. J. Chem. Phys. 33, 676 1960CrossRefGoogle Scholar
15McClure, D.S.: The distribution of transition metal cations in spinels. J. Phys. Chem. Solids 3, 311 1957CrossRefGoogle Scholar
16 JCPDS No. 11-0370. International Center for Diffraction Data: Newton Square, PA, 1957Google Scholar
17Galoisy, L.Galas, G.: Structural environment of nickel in silicate glass/melt system: Part 1. Spectroscopic determination of coordination states. Geochim. Cosmochim. Acta 57, 3613 1993CrossRefGoogle Scholar
18Kuleshov, N.V., Shsherbitsky, V.G., Mikhailov, V.P., Kück, S., Koetke, J., Petermann, K.Huber, G.: Spectroscopy and excited-state absorption of Ni2+-doped MgAl2O4. J. Lumin. 71, 265 1997CrossRefGoogle Scholar