Hostname: page-component-cd9895bd7-7cvxr Total loading time: 0 Render date: 2024-12-23T12:39:18.344Z Has data issue: false hasContentIssue false

Optical properties and electrochromic response of nanostructured molybdenum trioxide films

Published online by Cambridge University Press:  14 January 2011

G. Beydaghyan*
Affiliation:
Thin Films and Photonics Research Group (GCMP), Department of Physics and Astronomy, Université de Moncton, Moncton, N.B., Canada E1A 3E9
M. Boudreau
Affiliation:
Thin Films and Photonics Research Group (GCMP), Department of Physics and Astronomy, Université de Moncton, Moncton, N.B., Canada E1A 3E9
P.V. Ashrit
Affiliation:
Thin Films and Photonics Research Group (GCMP), Department of Physics and Astronomy, Université de Moncton, Moncton, N.B., Canada E1A 3E9
*
a)Address all correspondence to this author.e-mail: [email protected]
Get access

Abstract

We report on the electrochromic response of as-deposited and annealed nanostructured molybdenum trioxide films prepared with the glancing angle deposition (GLAD) technique. Morphology of the as-deposited films, obtained with an atomic force microscope (AFM), showed a typical grain size of 10 to 50 nm diameter. After annealing, the AFM images clearly showed the dominant presence of a layered structure, characteristic of the orthorhombic (α) phase of molybdenum trioxide, with typical grain dimensions of a few micrometers. The annealed samples showed pronounced coloration in the visible and near-infrared regions of the electromagnetic spectrum, while the as-deposited samples showed significant coloration only in the visible region.

Type
Articles
Copyright
Copyright © Materials Research Society 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Granqvist, C.G.: Handbook of Inorganic Electrochromic Materials (Elsevier, Amsterdam, 1995).Google Scholar
2.Dillon, A.C., Mahan, A.H., Deshpande, R., Parilla, P.A., Jones, K.M., and Lee, S.H.: Metal oxide nano-particles for improved electrochromic and lithium-ion battery technologies. Thin Solid Films 516, 794 (2008).CrossRefGoogle Scholar
3.Julien, C., Khelfa, A., Guesdon, J.P., and Gorenstein, A.: Lithium intercalation in MoO3: A comparison between crystalline and disordered phases. Appl. Phys. A 59, 173 (1994).CrossRefGoogle Scholar
4.Winter, M., Besenhard, J.O., Spahr, M.E., and Novak, P.: Insertion electrode materials for rechargable lithium batteries. Adv. Mater. 10, 725 (1998).3.0.CO;2-Z>CrossRefGoogle Scholar
5.Song, J., Ni, X., Zhang, D., and Zheng, H.: Fabrication and photoluminescence properties of hexagonal MoO3. Solid State Sci. 8, 1164 (2006).CrossRefGoogle Scholar
6.Martinez Guerrero, R., Vargas Garcia, J.R., Santes, V., and Gomez, E.: Preparation of molybdenum oxide thin films by MOCVD. J. Alloys Compd. 434435, 701 (2007).CrossRefGoogle Scholar
7.Taj, A. and Ashrit, P.V.: Dry lithiation studies of nanostructured sputter deposited molybdenum oxide thin films. J. Mater. Sci. 39, 3541 (2004).CrossRefGoogle Scholar
8.Ding, Q.P., Huang, H.B., Duan, J.H., Gong, J.F., Yang, S.G., Zhao, X.N., and Du, Y.W.: Molybdenum trioxide nanostructures prepared by thermal oxidization of molybdenum. J. Cryst. Growth 294, 304 (2006).CrossRefGoogle Scholar
9.Sivakumar, R., Vijayan, V., Ganesan, V., Jayachandran, M., and Sanjeeviraja, C.: Electron beam evaporated molybdenum oxide films: A study of elemental and surface morphological properties. Smart Mater. Struct. 14, 1204 (2005).CrossRefGoogle Scholar
10.Sivakumar, R., Gopalakrishnan, R., Jayachandran, M., and Sanjeeviraja, C.: Characterization on electron beam evaporated α-MoO3 thin films by the influence of substrate temperature. Curr. Appl. Phys. 7, 51 (2007).CrossRefGoogle Scholar
11.McEvoy, T.M., Stevenson, K.J., Hupp, J.T., and Dang, X.: Electrochemical preparation of molybdenum trioxide thin films: Effect of sintering on electrochemical and electroinsertion properties. Langmuir 19, 4316 (2003).CrossRefGoogle Scholar
12.Sian, T.S. and Reddy, G.B.: Optical, structural and photoelectron spectroscopic studies on amorphous and crystalline molybdenum oxide thin film. Sol. Energy Mater. Sol. Cells 82, 375 (2004).CrossRefGoogle Scholar
13.Gesheva, K., Szekeres, A., and Ivanova, T.: Optical properties of chemical vapor deposited thin films of molybdenum and tungsten based metal oxides. Sol. Energy Mater. Sol. Cells 76, 563 (2003).CrossRefGoogle Scholar
14.Robbie, K. and Brett, M.J.: Sculptured thin films and glancing angle deposition: Growth mechanics and applications. J. Vac. Sci. Technol., A 15, 1460 (1997).CrossRefGoogle Scholar
15.Beydaghyan, G., Doiron, S., Haché, A., and Ashrit, P.V.: Enhanced photochromism in nanostructured molybdenum trioxide films. Appl. Phys. Lett. 95, 051917 (2009).CrossRefGoogle Scholar
16.Ashrit, P.V., Bader, G., Girouard, F.E., and Truong, V-V.: Electrochromic materials for ‘smart’ window applications. Proc. SPIE 1401, 119 (1991).CrossRefGoogle Scholar
17.Bader, G., Ashrit, P.V., and Truong, V-V.: Transmission and reflection ellipsometry of thin films and multilayer systems. Appl. Opt. 37, 1146 (1998).CrossRefGoogle ScholarPubMed
18.Beydaghyan, G., Bader, G., and Ashrit, P.V.: Electrochromic and morphological investigation of dry-lithiated nanostructured tungsten trioxide thin films. Thin Solid Films 516, 1646 (2008).CrossRefGoogle Scholar
19.Beydaghyan, G., Renaud, J-L.M., Bader, G., and Ashrit, P.V.: Enhanced electrochromic properties of heat treated nanostructured tungsten trioxide thin films. J. Mater. Res. 23, 274 (2008).CrossRefGoogle Scholar
20.Beydaghyan, G., Kaminska, K., Brown, T., and Robbie, K.: Enhanced birefringence in vacuum evaporated silicon thin films. Appl. Opt. 43, 5343 (2004).CrossRefGoogle ScholarPubMed
21.Aspnes, D.E.: Local-field effects and effective-medium theory: A microscopic perspective. Am. J. Phys. 50, 704 (1982).CrossRefGoogle Scholar
22.Yoldas, B.E. and Partlow, D.P.: Investigation of porous oxides as an antireflection coating for glass surfaces. Appl. Opt. 23, 1418 (1984).CrossRefGoogle Scholar
23.May, R.A., Kondrachova, L., Hahn, B.P., and Stevenson, K.J.: Optical constants of electrodeposited mixed molybdenum–tungsten oxide films determined by variable-angle spectroscopic ellipsometry. J. Phys. Chem. C 111, 18251 (2007).CrossRefGoogle Scholar
24.Suzuki, M. and Taga, Y.: Numerical study of the effective surface area of obliquely deposited thin films. J. Appl. Phys. 90, 5599 (2001).CrossRefGoogle Scholar
25.Berggren, L., Azens, A., and Niklasson, G.A.: Polaron absorption in amorphous tungsten oxide films. J. Appl. Phys. 90, 1860 (2001).CrossRefGoogle Scholar
26.Yoshida, S.: Efficiency of Drude mirror-type selective transparent filters for solar thermal conversion. Appl. Opt. 17, 145 (1978).CrossRefGoogle ScholarPubMed
27.Cogan, S.F., Plante, T.D., Parker, M.A., and Rauh, R.D.: Free-electron electrochromic modulation in crystalline Li xWO3. J. Appl. Phys. 60, 2735 (1986).CrossRefGoogle Scholar