Hostname: page-component-586b7cd67f-2plfb Total loading time: 0 Render date: 2024-11-26T05:59:33.588Z Has data issue: false hasContentIssue false

Optical and magnetic properties of nanostructured cerium-doped LaMgAl11O19

Published online by Cambridge University Press:  17 June 2020

Ladislav Nádherný*
Affiliation:
Department of Inorganic Chemistry, University of Chemistry and Technology Prague, 166 28Prague 6, Czech Republic
Václav Doležal
Affiliation:
Department of Inorganic Chemistry, University of Chemistry and Technology Prague, 166 28Prague 6, Czech Republic
David Sedmidubský
Affiliation:
Department of Inorganic Chemistry, University of Chemistry and Technology Prague, 166 28Prague 6, Czech Republic
Jakub Cajzl
Affiliation:
Department of Inorganic Chemistry, University of Chemistry and Technology Prague, 166 28Prague 6, Czech Republic
Romana Kučerková
Affiliation:
Institute of Physics of the Academy of Sciences of the Czech Republic, 162 00Prague 6, Czech Republic
Martin Nikl
Affiliation:
Institute of Physics of the Academy of Sciences of the Czech Republic, 162 00Prague 6, Czech Republic
Vít Jakeš
Affiliation:
Department of Inorganic Chemistry, University of Chemistry and Technology Prague, 166 28Prague 6, Czech Republic
Kateřina Rubešová
Affiliation:
Department of Inorganic Chemistry, University of Chemistry and Technology Prague, 166 28Prague 6, Czech Republic
*
a)Address all correspondence to this author. e-mail: [email protected]
Get access

Abstract

Cerium-doped lanthanum magnesium bulk aluminate (La1–xCexMgAl11O19, x = 0.03–0.50; abbreviated as LMA) was prepared via the Pechini sol–gel method after heating at 1200 °C for 2 h. The resulting single-phase ceramics was studied in terms of its structure using X-ray diffraction and optical properties using photoluminescence, its decay time, and radioluminescence spectroscopy. The diffraction and electron microscopy demonstrated LMA's plate-shaped nanocrystals with structure anisotropy and relatively broad particle size distribution. The optical measurements fully manifested the complexity of the LMA crystal structure. The radioluminescence study of cerium-doped LMA is here presented for the first time and, thus, contributes to the basic knowledge of Ce-doped materials. Additionally, the magnetic susceptibility exhibiting paramagnetic behavior of Ce3+ ions is presented. The magnetic data were interpreted in terms of local atomic Hamiltonian involving the crystal field and the Zeeman effect applied on the ground state J = 5/2 multiplet.

Type
Invited Paper
Copyright
Copyright © Materials Research Society 2020

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Min, X., Fang, M., Huang, Z., Liu, Y.g., Tang, C., and Wu, X.: Synthesis and optical properties of Pr3+-doped LaMgAl11O19 – A novel blue converting yellow phosphor for white light emitting diodes. Ceram. Int. 41(3, Pt A), 4238 (2015).CrossRefGoogle Scholar
Ekambaram, S., Patil, K.C., and Maaza, M.: Synthesis of lamp phosphors: Facile combustion approach. J. Alloys Compd. 393, 81 (2005).CrossRefGoogle Scholar
Tian, M., Wang, X.D., and Zhang, T.: Hexaaluminates: a review of the structure, synthesis and catalytic performance. Catal. Sci. Technol. 6, 1984 (2016).CrossRefGoogle Scholar
Jia, P.Y., Yu, M., and Lin, J.: Sol-gel deposition and luminescent properties of LaMgAl11O19:Ce3+/Tb3+ phosphor films. J. Solid State Chem. 178, 2734 (2005).CrossRefGoogle Scholar
Weber, M.J.: Handbook of Optical Materials (CRC Press, Berkeley, CA, 2002).CrossRefGoogle Scholar
Yen, W.M. and Yamamoto, H.: Practical Applications of Phosphors (CRC Press, Boca Raton, FL, 2006).CrossRefGoogle Scholar
Zhu, J., Xia, Z., and Liu, Q.: Synthesis and energy transfer studies of LaMgAl11O19:Cr3+, Nd3+ phosphors. Mater. Res. Bull. 74, 9 (2016).CrossRefGoogle Scholar
Singh, V., Singh, N., Pathak, M.S., Watanabe, S., Gundu Rao, T.K., Singh, P.K., and Kwon, Y.W.: PL and ESR of Gd3+in LaMgAl11O19 phosphors. J. Mater. Sci.: Mater. Electron. 29, 4632 (2018).Google Scholar
Stevels, A.: Ce3+ luminescence in hexagonal aluminates containing large divalent or trivalent cations. J. Electrochem. Soc. 125, 588 (1978).CrossRefGoogle Scholar
Fan, H., Chen, Y., Yan, T., Lin, J., Peng, G., Wang, J., Boughton, R.I., and Ye, N.: Crystal growth, spectral properties and Judd-Ofelt analysis of Pr3+:LaMgAl11O19. J. Alloys Compd. 767, 938 (2018).CrossRefGoogle Scholar
Sommerdijk, J.L., van der Does de Bye, J.A.W., and Verberne, P.H.J.M.: Decay of the Ce3+ luminescence of LaMgAl11O19 : Ce3+ and of CeMgAl11O19 activated with Tb3+ or Eu3+. J. Lumin.14, 91 (1976).CrossRefGoogle Scholar
Verstegen, J.M.P.J., Sommerdijk, J.L., and Verriet, J.G.: Cerium and terbium luminescence in LaMgAl11O19. J. Lumin. 6, 425 (1973).CrossRefGoogle Scholar
Jüstel, T., Möller, S., Winkler, H., and Adam, W.: Luminescent Materials in Ullmann's Encyclopedia of Industrial Chemistry, Vol. A1-28 (Wiley-VCH, Electronic edition, 2012).Google Scholar
Xu, P., Xia, C., Di, J., Xu, X., Sai, Q., and Wang, L.: Growth and optical properties of Co,Nd:LaMgAl11O19. J. Cryst. Growth 361, 11 (2012).CrossRefGoogle Scholar
Viana, B., Lejus, A.M., Vivien, D., and Garapon, C.: Energy transfers in the potential laser materials LMA:Ce, Nd and LMA:Cr, Ce, Nd (LMA = LaMgAl11O19). J. Mater. Sci. 27, 813 (1992).CrossRefGoogle Scholar
Viana, B., Garapon, C., Lejus, A.M., and Vivien, D.: Cr3+ → Nd3+ energy transfer in the LaMgAl11O19 : Cr, Nd laser material. J. Lumin. 47, 73 (1990).CrossRefGoogle Scholar
Nikl, M., Vedda, A., and Laguta, V.V.: Single-Crystal Scintillation Materials in Springer Handbook of Crystal Growth (Springer, Berlin, Heidelberg, 2010), pp. 1663.CrossRefGoogle Scholar
Trower, W.P.: Cerium-doped yttrium aluminum perovskite (YAP): Properties of commercial crystals. MRS Proc. 348, 131 (2011).CrossRefGoogle Scholar
Wojtowicz, A.J., Lempicki, A., Wisniewski, D., and Boatner, L.A.: Cerium-doped orthophosphate scintillators. MRS Proc. 348, 123 (2011).CrossRefGoogle Scholar
Liu, X.-J., Li, H.-L., Xie, R.-J., Hirosaki, N., Xu, X., and Huang, L.-P.: Cerium-doped lutetium aluminum garnet optically transparent ceramics fabricated by a sol-gel combustion process. J. Mater. Res. 21, 1519 (2006).CrossRefGoogle Scholar
Viana, B., Aka, G., Vivien, D., Lejus, A.M., Théry, J., Derory, A., Bernier, J.C., Garapon, C., and Boulon, G.: Absorption, fluorescence, and electron spin resonance investigation of tervalent cerium activated LaMgAl11O19. J. Appl. Phys. 64, 1398 (1988).CrossRefGoogle Scholar
He, M.T., Meng, H.M., Wang, Y.C., and Ren, P.W.: Synthesis mechanism and preparation of LaMgAl11O19 powder for plasma spraying. Mater. Res. Express 5 (2018).CrossRefGoogle Scholar
Fu, L., Liu, G., Yang, X., Fu, Z., and Yang, Y.: Up-conversion luminescent properties and optical thermometry of LaMgAl11O19:Yb3+/Er3+ phosphors. Ceram. Int. 41, 140640 (2015).CrossRefGoogle Scholar
Doležal, V., Nádherný, L., Rubešová, K., Jakeš, V., Michalcová, A., Jankovský, O., and Poupon, M.: LaMgAl11O19 synthesis using non-hydrolytic sol-gel methods. Ceram. Int. 45(9), 11233 (2019).CrossRefGoogle Scholar
Pang, M., Liu, X., and Lin, J.: Luminescence properties of R2MoO6:Eu3+ (R = Gd, Y, La) phosphors prepared by Pechini sol-gel process. J. Mater. Res. 20, 2676 (2005).CrossRefGoogle Scholar
Zhang, Z.Y., Zhang, Y.H., Li, X., Xu, H.H., and Huang, Y.: The relationships between crystal structure of alkaline earth metal hexagonal aluminate and 4f-5d transitions of Ce3+ and Tb3+ ions. J. Non-Cryst. Solids 354, 1943 (2008).CrossRefGoogle Scholar
Mareš, J.A., Čechová, N., Nikl, M., Kvapil, J., Krátký, R., and Pospíšil, J.: Cerium-doped RE3+AlO3 perovskite scintillators: Spectroscopy and radiation induced defects. J. Alloys Compd. 275–277, 200 (1998).CrossRefGoogle Scholar
Xie, L. and Cormack, A.N.: Defect solid state chemistry of magnetoplumbite-structured ceramic oxides II: Defect energetics in LaMgAl11O19. J. Solid State Chem. 88, 543 (1990).CrossRefGoogle Scholar
Kamada, K., Endo, T., Tsutumi, K., Yanagida, T., Fujimoto, Y., Fukabori, A., Yoshikawa, A., Pejchal, J., and Nikl, M.: Composition engineering in cerium-doped (Lu,Gd)3(Ga,Al)5O12 single-crystal scintillators. Cryst. Growth Des. 11, 4484 (2011).CrossRefGoogle Scholar
Lipp, M.J., Jeffries, J.R., Cynn, H., Klepeis, J.H.P., Evans, W.J., Mortensen, D.R., Seidler, G.T., Xiao, Y., and Chow, P.: Comparison of the high-pressure behavior of the cerium oxides Ce2O3 and CeO2. Phys. Rev. B 93(6), 064106 (2016).CrossRefGoogle Scholar
Aruna, S.T., Kini, N.S., Shetty, S., and Rajam, K.S.: Synthesis of nanocrystalline CeAlO3 by solution-combustion route. Mater. Chem. Phys. 119, 485 (2010).CrossRefGoogle Scholar
Małecka, M.A. and Kępiński, L.: New, intermediate polymorph of CeAlO3 with hexagonal structure-formation and thermal stability. CrystEngComm 17, 2273 (2015).CrossRefGoogle Scholar