Hostname: page-component-586b7cd67f-dlnhk Total loading time: 0 Render date: 2024-11-26T03:56:06.645Z Has data issue: false hasContentIssue false

On-chip tensile testing of nanoscale silicon free-standing beams

Published online by Cambridge University Press:  04 November 2011

Umesh Bhaskar*
Affiliation:
Research Center in Micro and Nanoscopic Materials and Electronic Devices, Université Catholique de Louvain, B-1348 Louvain-la-Neuve, Belgium; and Institute of Information and Communication Technologies, Electronics and Applied Mathematics, Université Catholique de Louvain, B-1348 Louvain-la-Neuve, Belgium
Vikram Passi
Affiliation:
Research Center in Micro and Nanoscopic Materials and Electronic Devices, Université Catholique de Louvain, B-1348 Louvain-la-Neuve, Belgium; and Institute of Information and Communication Technologies, Electronics and Applied Mathematics, Université Catholique de Louvain, B-1348 Louvain-la-Neuve, Belgium
Samer Houri
Affiliation:
Research Center in Micro and Nanoscopic Materials and Electronic Devices, Université Catholique de Louvain, B-1348 Louvain-la-Neuve, Belgium; and Institute of Information and Communication Technologies, Electronics and Applied Mathematics, Université Catholique de Louvain, B-1348 Louvain-la-Neuve, Belgium
Enrique Escobedo-Cousin
Affiliation:
Newcastle University, School of Electrical, Electronic & Computer Engineering, NE1 7RU, Newcastle upon Tyne, United Kingdom
Sarah H. Olsen
Affiliation:
Newcastle University, School of Electrical, Electronic & Computer Engineering, NE1 7RU, Newcastle upon Tyne, United Kingdom
Thomas Pardoen
Affiliation:
Institute of Mechanics, Materials and Civil Engineering, Université Catholique de Louvain, B-1348 Louvain-la-Neuve, Belgium; and Research Center in Micro and Nanoscopic Materials and Electronic Devices, Université Catholique de Louvain, B-1348 Louvain-la-Neuve, Belgium
Jean-Pierre Raskin
Affiliation:
Research Center in Micro and Nanoscopic Materials and Electronic Devices, Université Catholique de Louvain, B-1348 Louvain-la-Neuve, Belgium; and Institute of Information and Communication Technologies, Electronics and Applied Mathematics, Université Catholique de Louvain, B-1348 Louvain-la-Neuve, Belgium
*
a)Address all correspondence to this author. e-mail: [email protected]
Get access

Abstract

Nanomechanical testing of silicon is primarily motivated toward characterizing scale effects on the mechanical behavior. “Defect-free” nanoscale silicon additionally offers a road to large deformation permitting the investigation of transport characteristics and surface instabilities of a significantly perturbed atomic arrangement. The need for developing simple and generic characterization tools to deform free-standing silicon beams down to the nanometer scale, sufficiently equipped to investigate both the mechanical properties and the carrier transport under large strains, has been met in this research through the design of a versatile lab-on-chip. The original on-chip characterization technique has been applied to monocrystalline Si beams produced from Silicon-on-Insulator wafers. The Young’s modulus was observed to decrease from 160 GPa down to 108 GPa when varying the thickness from 200 down to 50 nm. The fracture strain increases when decreasing the volume of the test specimen to reach 5% in the smallest samples. Additionally, atomic force microscope-based characterizations reveal that the surface roughness decreases by a factor of 5 when deforming by 2% the Si specimen. Proof of concept transport measurements were also performed under deformation up till 3.5% on 40-nm-thick lightly p-doped silicon beams.

Type
Articles
Copyright
Copyright © Materials Research Society 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Kang, K. and Cai, W.: Size and temperature effects on the fracture mechanisms of silicon nanowires: Molecular dynamics simulations. Int. J. Plast. 26, 1387 (2010).CrossRefGoogle Scholar
2.Heidelberg, A., Ngo, L.T., Wu, B., Philips, M.A., Sharma, S., Kamins, T.I., Sader, J.E., and Boland, J.J.: A generalized description of the elastic properties of nanowires. Nano Lett. 6(6), 1101 (2006).CrossRefGoogle ScholarPubMed
3.Zhu, Y., Moldovan, N., and Espinosa, H.D.: A microelectromechanical load sensor for in situ electron and x-ray microscopy tensile testing of nanostructures. Appl. Phys. Lett. 86, 013506 (2005).CrossRefGoogle Scholar
4.Han, X., Zheng, K., Zhang, Y., Zhang, X., Zhang, Z., and Wang, Z.: Low-temperature in-situ large-strain plasticity of silicon nanowires. Adv. Mater. 19, 2112 (2007).CrossRefGoogle Scholar
5.Nakamura, K., Toriyama, T., and Sugiyama, S.: First-principles simulation on piezoresistive properties in doped silicon nanosheets. IEEJ Trans. Electr. Electron. Eng. 5(2), 157 (2010).CrossRefGoogle Scholar
6.He, R. and Yang, P.: Giant piezoresistance effect in silicon nanowires. Nat. Nanotechnol. 1, 42 (2006).CrossRefGoogle ScholarPubMed
7.Barlian, A.A., Park, W.T., Mallon, J.R. Jr, Rastegar, A.J., and Pruitt, B.L.: Review: Semiconductor piezoresistance for microsystems. Proc IEEE Inst. Electr. Electron. Eng. 97(3) 513 (2009).CrossRefGoogle ScholarPubMed
8.Singh, D.V., Jenkins, K.A., Sleight, J., Ren, Z., Ieong, M., and Haensch, W.: Strained ultrahigh performance fully depleted nMOSFETs with ft of 330 GHz and sub-30-nm gate lengths. IEEE Electron Device Lett. 27(3), 191 (2006).CrossRefGoogle Scholar
9.Tan, K-M., Liow, T.Y., Lee, R. T. P., Hoe, K. M., Tung, C-H., Balasubramanian, N., Samudra, G. S., and Yeo, Y-C.: Strained p-channel FinFETs with extended π-shaped silicon-germanium source and drain stressors. IEEE Electron Device Lett. 28(10), 905 (2007).CrossRefGoogle Scholar
10.Freund, L.B. and Suresh, S.: Thin Film Materials, 1st ed. (Cambridge University Press, Cambridge 2003).Google Scholar
11.Lugstein, A., Steinmair, M., Steiger, A., Kosina, H., and Bertagnolli, E.: Anomalous piezoresistance effect in ultra-strained silicon nano-wires. Nano Lett. 10(8), 3204 (2010).CrossRefGoogle Scholar
12.Hoffmann, S., Utke, I., Moser, B., Michler, J., Christiansen, S.H., Schmidt, V., Senz, S., Werner, P., Gosele, U., and Ballif, C.: Measurement of the bending strength of vapor-liquid-solid grown silicon nanowires. Nano Lett. 6(4), 622 (2006).CrossRefGoogle ScholarPubMed
13.San Paulo, A., Bokor, J., Howe, R.T., He, R., Yang, P., Gao, D., Carraro, C., and Maboudian, R.: Mechanical elasticity of single and double clamped silicon nanobeams fabricated by the vapor-liquid-solid method. Appl. Phys. Lett. 87, 053111 (2005).CrossRefGoogle Scholar
14.Wu, B., Heidelberg, A., and Boland, J.J.: Mechanical properties of ultrahigh-strength gold nanowire. Nat. Mater. 4, 525 (2005).CrossRefGoogle Scholar
15.Haque, M.A. and Saif, M.T.A.: Microscale materials testing using MEMS actuators. J. Microelectromech. Syst. 10(1), 146 (2001).CrossRefGoogle Scholar
16.Espinosa, H.D., Zhu, Y., and Moldovan, N.: Design and operation of a MEMS based material testing system for nanomechanical characterization. J. Microelectromech. Syst. 16(5), 1219 (2007).CrossRefGoogle Scholar
17.Tsuchiya, T., Hirata, M., Chiba, N., Udo, R., Yoshitomi, Y., Ando, T., Sato, K., Takashima, K., Higo, Y., Saotome, Y., Ogawa, H., Ozaki, K.: Cross comparison of thin-film tensile-testing methods examined using single-crystal silicon, polysilicon, nickel, and titanium films. IEEE J Microelectromech. Syst. 14(5), 666 (2005).Google Scholar
18.Gravier, S., Coulombier, M., Safi, A., André, N., Boé, A., Raskin, J.-P., and Pardoen, T.: New on-chip nanomechanical testing laboratory—Applications to aluminum and polysilicon thin films. J. Microelectromech. Syst. 18(3), 555 (2009).Google Scholar
19.Passi, V., Bhaskar, U., Pardoen, T., Södervall, U., Nilsson, B., Petersson, G., Hagberg, M., Raskin, JP.: Fast and reliable fracture strain extraction technique applied to Silicon at nanometer scale. Rev. Sci. Instrum. (2011, accepted).CrossRefGoogle ScholarPubMed
20.Escobedo-Cousin, E., Raskin, J-P., Bhaskar, U., Pardoen, T., and Olsen, S.: Characterising the effect of uniaxial strain on the surface roughness of Si nanowire MEMS-based microstructures, in Proceedings of the 2010 Materials Research Society Fall Meeting—MRS Fall’10, Boston, Massachusetts, November 29–December 3, 2010, oral presentation, paper # S3.4.Google Scholar
21.Idrissi, H., Wang, B., Colla, M.S., Raskin, J.P., Schryvers, D., and Pardoen, T.: Ultrahigh strain hardening in thin palladium films with nanoscale twins. Adv. Mater. 23, 2119 (2011).CrossRefGoogle ScholarPubMed
22.Fabregue, D., André, N., Coulombier, M., Raskin, J.-P., and Pardoen, T.Multipurpose nanomechanical testing machines revealing the size-dependent strength and high ductility of pure aluminium submicron films. Micro Nano Lett. 2(1), 13 (2008).Google Scholar
23.Irene, E.A.: Residual stress in silicon nitride films. J. Electron. Mater. 5(3), 287 (1976).CrossRefGoogle Scholar
24.Brillson, L.: Surfaces and Interfaces of Electronic Material (Wiley VCH, Berlin, 2010).Google Scholar
25.Milne, J. S., Rowe, A. C., Arscott, S., Renner, C. H.: Giant piezoresistance effects in silicon nano wires and microwires. Phys Rev Lett. 26, 10522, (2010).Google Scholar
26.Euaruksakul, C., Chen, F., Tanto, B., Ritz, C.S., Paskiewicz, D.M., Himpsel, F.J., Savage, D.E., Liu, Z., Uao, Y., Liu, F., and Lagally, M.G.: Relationships between strain and band structure in Si(001) an Si (110) nanomembranes. Phys. Rev. B 80, 115323 (2009).CrossRefGoogle Scholar
27.Yang, Y., Xia, X., Gan, X., Xu, P., Yu, H., and Li, X.: Nano-thick resonant cantilevers with a novel specific reaction-induced frequency-increase effect for ultra-sensitive chemical detection. J. Micromech. Microeng. 20, 055022 (2010).CrossRefGoogle Scholar
28.Bhaskar, U., Houri, S., Passi, V., Pardoen, T., and Raskin, J-P.: Nano-mechanical testing of free-standing mono-crystalline silicon beams, in Proceedings of the 219th Electrochemical Society Meeting—ECS 2011, Montreal, QC, Canada, May 1–6, 2011, paper # 1446.Google Scholar
29.Kynch, G.J.: The fundamental modes of vibration of uniform beams from medium wavelengths. Br. J. Appl. Phys. 8, 64 (1957).CrossRefGoogle Scholar
30.Zhou, L.G. and Huang, H.: Are surfaces elastically stiffer or softer? Appl. Phys. Lett. 84, 11 (2004).CrossRefGoogle Scholar
31.Sadeghian, H., Goosen, H., Bossche, A., Thijsse, B., and van Keulen, F.: On the size-dependent elasticity of silicon nanocantilevers: Impact of defects. J. Phys. D: Appl. Phys. 44, 072001 (2011).CrossRefGoogle Scholar
32.Sadeghian, H., Goosen, J.F.L., Bossche, A., Thijsse, B.J., and van Keulen, F.: Surface reconstruction and elastic behavior of silicon nanobeams: The impact of applied deformation. Thin Solid Films 518, 3273 (2010).CrossRefGoogle Scholar
33.Sadeghian, H., Yang, C.K., Goosen, J.F.L., van der Drift, E., Bossche, A., French, P.J., and Van Keulen, F.: Characterizing size-dependent effective elastic modulus of silicon nanocantilevers using electrostatic pull-in instability. Appl. Phys. Lett. 94, 221903 (2009).CrossRefGoogle Scholar
34.Johansson, S., Schweitz, J-Å., Tenerz, L., and Tirén, J.: Fracture testing of silicon microelements in situ in a scanning electron microscope. J. Appl. Phys. 63, 4799 (1988).Google Scholar
35.Wilson, C.J. and Beck, P.A.: Fracture testing of bulk silicon micro cantilever beams subjected to a side load. IEEE J Microelectromech. Syst. 5(3), 142 (1996).CrossRefGoogle Scholar
36.Wonmo Kang Han, J.H., Saif, M.T.A.: A novel method for in situ uniaxial tests at the micro/nanoscale—Part II. Experiment. J. Microelectromech. Syst. 19(6), 1322 (2010).Google Scholar
37.Cook, R.F.: Strength and sharp contact fracture of silicon. J. Mater. Sci. 41, 841 (2006).Google Scholar
38.Boyce, B.L., Grazier, J.M., Buchheit, T.E., and Shaw, M.J.: Strength distribuitions in polycrystalline silicon MEMS. IEEE J Microelectromech Syst. 16(2), 179 (2007).CrossRefGoogle Scholar
39.Alan, T., Hines, M.A., and Zehnder, A.T.: Effect of surface morphology on the fracture strength of silicon nanobeams. Appl. Phys. Lett. 89, 091901 (2006).Google Scholar
40.Yi, T., Li, L., and Kim, C-J.: Microscale material testing of single crystalline silicon: Process effects on surface morphology and tensile strength. Sens. Actuators 83, 172 (2000).CrossRefGoogle Scholar
41.Fischetti, M.V., Gámiz, F., and Hansch, W.: On the enhanced electron mobility in strained-silicon inversion layers. J. Appl. Phys. 92(12), 7320 (2002).CrossRefGoogle Scholar
42.Hadjisavvas, G., Tsetseris, L., and Pantelides, S.T.: The origin of electron mobility enhancement in strained MOSFETS. IEEE Electron Device Lett. 28, 1018 (2007).Google Scholar
43.Evans, M. H., Zhang, X.G., Joannoôulos, J. D., Pantelides, S. T.: First principles mobility calculations and interface roughness in nanoscale structures. Phys Rev Lett. 95, 106802 (2005).CrossRefGoogle ScholarPubMed
44.Chen, F., Ramayya, E., Euaruksakul, C., Himpsel, F., Celler, G., Ding, B., Knezevic, I., and Lagally, M.: Quantum confinement, surface roughness and the conduction band structure of ultrathin silicon membranes. ACS Nano 4(4), 2466 (2010).Google Scholar
45.Scott, A.S., Peng, W., Kiefer, A.M., Jiang, H., Knezevic, I., Savage, D.E., Eriksson, M.A., and Lagally, M.G.: Influence of surface chemical modification on charge transport on ultrathin silicon membranes. ACS Nano 3(7), 1683 (2009).Google Scholar