Published online by Cambridge University Press: 31 January 2011
Growth of In0.52Al0.48As epilayers on InP(100) substrates by molecular beam epitaxy at a wide range of substrate temperatures (470–550 °C) is carried out. Low temperature photoluminescence (PL) and double-axis x-ray diffraction (XRD) measurements showed a strong dependence of the PL and XRD linewidths and lattice mismatch on the substrate temperature. Minimum PL and XRD linewidths and lattice mismatch were found to occur at substrate temperatures of between ≈500 and 520 °C under the beam fluxes used in this study. The XRD intensity ratios (Iepi/Isub) were generally higher within the same substrate temperature range at which the lattice mismatch was the lowest. XRD rocking curves of samples grown at low temperatures showed the main epilayer peak to be composed of smaller discrete peaks, suggesting the presence of regions with different lattice constants in the material. PL spectra taken at increasing temperatures showed the quenching of the main emission peak followed by the evolution of a distinct lower energy peak which is possibly associated with deep lying centers.