Hostname: page-component-745bb68f8f-g4j75 Total loading time: 0 Render date: 2025-01-24T13:21:10.950Z Has data issue: false hasContentIssue false

On the solidification of Al62Cu20Co15Si3 and Al61Cu19.5Co14.5Si5 alloys

Published online by Cambridge University Press:  31 January 2011

B. Grushko
Affiliation:
Institut für Festkörperforschung, Forschungszentrum Jülich GmbH, Postfach 1913, D-W5170 Jülich, Germany
R. Wittmann
Affiliation:
Institut für Festkörperforschung, Forschungszentrum Jülich GmbH, Postfach 1913, D-W5170 Jülich, Germany
K. Urban
Affiliation:
Institut für Festkörperforschung, Forschungszentrum Jülich GmbH, Postfach 1913, D-W5170 Jülich, Germany
Get access

Abstract

The solidification behavior of Al62Cu20Co15Si3 and Al61Cu19.5Co14.5Si5 alloys was studied by means of optical metallography, scanning and transmission electron microscopy, energy-dispersive x-ray analysis, powder x-ray diffraction, and differential thermal analysis. Slowly as well as rapidly cooled ingots of both alloys contained a decagonal quasicrystalline phase as the dominant phase with, additionally, several minor crystalline phases. The structure of the rapidly solidified Si-containing alloys was similar to that of the ternary Al65Cu20Co15 alloy. In the slowly solidified alloys the substitution of 3 at. % Al by Si did not change the basic phase constitution. Si was only partially incorporated in the decagonal phase and a significant quantity of Si was found in elemental form. The increase of Si concentration to 5 at. % resulted in the appearance of new minor phases.

Type
Articles
Copyright
Copyright © Materials Research Society 1992

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1He, L.X., Wu, Y.K., and Kuo, K.H., J. Mater. Sci. Lett. 7, 1284 (1988).CrossRefGoogle Scholar
2Tsai, A. P., Inoue, A., and Masumoto, T., Mater. Trans. JIM 30, 463 (1989).Google Scholar
3Dong, C., Dubois, J. M., Boissieu, M. de, and Janot, Ch., J. Phys.: Condens. Matter 3, 1665 (1991).Google Scholar
4Hiraga, K., Sun, W., and Lincoln, F.J., Jpn. J. Appl. Phys. 30, L302 (1991).CrossRefGoogle Scholar
5Daulton, T.L. and Kelton, K.F., Philos. Mag. Lett. 63, 257 (1991).CrossRefGoogle Scholar
6He, L.X., Wu, Y.K., Meng, X.M., and Kuo, K.H., Philos. Mag. 61, 15 (1990).Google Scholar
7Launois, P., Audier, M., Denoyer, F., Dong, C., Dubois, J. M., and M. Lambert, Europhys. Lett. 13, 629 (1990).Google Scholar
8Grushko, B., Philos. Mag. Lett, (in press).Google Scholar
9Grushko, B. and Urban, K., J. Mater. Res. 6, 2629 (1991).CrossRefGoogle Scholar
10He, L.X., Li, X.Z., Zhang, Z., and Kuo, K.H., Phys. Rev. Lett. 61, 1116 (1988).Google Scholar
11Grushko, B., Phase Transitions (in press).Google Scholar
12Grushko, B., Urban, K., and Freiburg, Ch., Scripta Met. Mater. 25, 2533 (1991).CrossRefGoogle Scholar
13Skolozdra, R. V., Prevarskii, A. P., and Cherkashin, E. E., in Diagrammi Sostoiania Metallicheskich Sistem, edited by Ageev, N. V. (“Nauka”, Moscow, 1971) [in Russian].Google Scholar
14Ran, Q., in Ternary Alloys–A Comprehensive Compendium of Evaluated Constitutional Data and Phase Diagrams, edited by Petzow, G. and Effenberg, G. (VCH Verlagsgesellschaft, Weinheim, 1991), Vol. 4.Google Scholar
15Daulton, T., Kelton, K. F., Song, S., and Ryba, E. R., Philos. Mag. Lett. 65, 55 (1992).CrossRefGoogle Scholar
16Grushko, B. and Freiburg, Ch., J. Mater. Res. 7, 1100 (1992).Google Scholar
17Grushko, B., unpublished report.Google Scholar