Hostname: page-component-cd9895bd7-mkpzs Total loading time: 0 Render date: 2024-12-23T11:50:35.050Z Has data issue: false hasContentIssue false

On the generality of the relationship among contact stiffness, contact area, and elastic modulus during indentation

Published online by Cambridge University Press:  31 January 2011

G.M. Pharr
Affiliation:
Department of Materials Science, Rice University, P. O. Box 1982, Houston, Texas 77251
W.C. Oliver
Affiliation:
Metals and Ceramics Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831
F.R. Brotzen
Affiliation:
Department of Materials Science, Rice University, P. O. Box 1982, Houston, Texas 77251
Get access

Abstract

Results of Sneddon's analysis for the elastic contact between a rigid, axisymmetric punch and an elastic half space are used to show that a simple relationship exists among the contact stiffness, the contact area, and the elastic modulus that is not dependent on the geometry of the punch. The generality of the relationship has important implications for the measurement of mechanical properties using load and depth sensing indentation techniques and in the measurement of small contact areas such as those encountered in atomic force microscopy.

Type
Articles
Copyright
Copyright © Materials Research Society 1992

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Pethica, J.B., Hutchings, R., and Oliver, W.C., Philos. Mag. A 48, 593 (1983).CrossRefGoogle Scholar
2.Oliver, W. C., Hutchings, R., and Pethica, J. B., in ASTM STP 889, edited by Blau, P. J. and Lawn, B. R. (American Society for Testing and Materials, Philadelphia, PA, 1986), pp. 90108.Google Scholar
3.Doerner, M. F. and Nix, W. D., J. Mater. Res. 1, 601 (1986).CrossRefGoogle Scholar
4.Loubet, J. L., Georges, J. M., Marchesini, O., and Meille, G., J. Tribology 106, 43 (1984).CrossRefGoogle Scholar
5.Bulychev, S.I., Alekhin, V.P., Shorshorov, M. Kh., Ternovskii, A.P., and Shnyrev, G.D., Zavod. Lab. 41, 1137 (1975).Google Scholar
6.Newey, D., Wilkens, M.A., and Pollock, H.M., J. Phys. E: Sci. Instrum. 15, 119 (1982).CrossRefGoogle Scholar
7.Stone, D., LaFontaine, W. R., Alexopoulos, P., Wu, T-W., and Li, Che-Yu, J. Mater. Res. 3, 141 (1988).CrossRefGoogle Scholar
8.Shorshorov, M. Kh., Bulychev, S. I., and Alekhin, V. P., Sov. Phys. Sokl. 26, 769 (1982).Google Scholar
9.Gane, N. and Cox, J. M., Philos. Mag. 22, 881 (1970).CrossRefGoogle Scholar
10.Sneddon, I.N., Int. J. Engng. Sci. 3, 47 (1965).CrossRefGoogle Scholar
11.Stillwell, N.A. and Tabor, D., Proc. Phys. Soc. Lond. 78, 169 (1961).CrossRefGoogle Scholar
12.Oliver, W. C. and Pharr, G. M., in preparation.Google Scholar
13.King, R. B., Int. J. Solids Structures 23, 1657 (1987).CrossRefGoogle Scholar
14.Tabor, D., Proc. Roy. Soc. A 192, 247 (1948).Google Scholar
15.Johnson, K. L., Contact Mechanics (Cambridge University Press, Cambridge, 1985).CrossRefGoogle Scholar