Hostname: page-component-586b7cd67f-gb8f7 Total loading time: 0 Render date: 2024-11-29T21:27:43.617Z Has data issue: false hasContentIssue false

On the electronic basis of the phosphorus intergranular embrittlement of iron

Published online by Cambridge University Press:  31 January 2011

Ruqian Wu
Affiliation:
Department of Physics and Astronomy, Northwestern University, Evanston, Illinois 60208-3112
A.J. Freeman
Affiliation:
Department of Physics and Astronomy, Northwestern University, Evanston, Illinois 60208-3112
G.B. Olson
Affiliation:
Department of Materials Science and Engineering, Northwestern University, Evanston, Illinois 60208-3112
Get access

Abstract

Using the all-electron full potential linearized augmented plane wave (FLAPW) total energy method, the influence of P impurity atoms on the cohesion of the Fe Σ3[1$\overline 1$10](111) grain boundary is studied through direct comparison of phosphorus/iron interactions in the grain boundary and free surface environments. The calculated nearest P–Fe distance in P/Fe(111) is 2.14 Å—amounting to a 5% contraction compared to that (2.26 Å) measured for the Fe3P compound and assumed for the P–Fe grain boundary. The polar-covalent P–Fe chemical bonding, which is a strong function of the P–Fe interatomic distance, is thus stronger on the Fe(111) surface, while P reduces the spin polarization of the surrounding Fe atoms more efficiently in the grain boundary environment. These effects are examined in terms of the relative segregation energies affecting the work of boundary fracture.

Type
Articles
Copyright
Copyright © Materials Research Society 1992

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Olson, G. B., in Innovations in Ultrahigh-strength Steel Technology, edited by Olson, G. B., Azrin, M., and Wright, E. S., Sagamore Army Materials Research Conference Proceedings: 34th (1990), p. 1.Google Scholar
2.Chemistry and Physics of Fracture, edited by Latanision, R. M. and Jones, R. H. (Martinus Nijhoff, Hingham, MA, 1987); Atomistics of Fracture, edited by R. M.Latanision and J. R. Pickens (Plenum Press, New York, 1983).CrossRefGoogle Scholar
3.Rice, J. R. and Wang, J-S., Mat. Sci. Eng. A 107, 23 (1989).CrossRefGoogle Scholar
4.Anderson, P. M., Wang, J-S., and Rice, J. R., in Innovations in Ultrahigh-strength Steel Technology, edited by Olson, G.B., Azrin, M., and Wright, E. S., Sagamore Army Materials Research Conference Proceedings: 34th (1990), p. 619.Google Scholar
5.Wang, J-S., private communication.Google Scholar
6.Harrison, R. J., Spaepen, F., Voter, A. F., and Chen, S-P., in Innovations in Ultrahigh-strength Steel Technology, edited by Olson, G. B., Azrin, M., and Wright, E. S., Sagamore Army Materials Research Conference Proceedings: 34th (1990), p. 651.Google Scholar
7.Aronsson, B. and Rundqvist, S., Acta Cryst. 15, 878 (1962); S. Rundqvist, Arkiv för Kemi 20, 67 (1962).CrossRefGoogle Scholar
8.Troiano, A. R., Trans. Am. Soc. Met. 52, 54 (1960).Google Scholar
9.Collins, A., O'Handley, R. C., and Johnson, K.H., Phys. Rev. B 38, 3665 (1988).CrossRefGoogle Scholar
10.Messmer, R. P., Phys. Rev. B 23, 1616 (1981).CrossRefGoogle Scholar
11.Eberhart, M. E. and Vvedensky, D.D., Phys. Rev. Lett. 58, 61 (1987).CrossRefGoogle Scholar
12.Painter, G. S. and Averill, F.W., Phys. Rev. Lett. 58, 234 (1987).CrossRefGoogle Scholar
13.Messmer, R. P. and Briant, C. L., Acta Metall. 30, 457 (1982).CrossRefGoogle Scholar
14.Krasko, G. L. and Olson, G.B., Solid State Commun. 76, 247 (1990).CrossRefGoogle Scholar
15.Krasko, G. L. and Olson, G. B., Solid State Commun. (submitted).Google Scholar
16.Wimmer, E., Krakauer, H., Weinert, M., and Freeman, A. J., Phys. Rev. B 24, 864 (1981), and references therein.CrossRefGoogle Scholar
17.Koelling, D.D. and Harmon, B.N., J. Phys. C 10, 3107 (1977).Google Scholar
18.von Barth, U. and Hedin, L., J. Phys. C. 5, 1629 (1972).Google Scholar
19.Freeman, A. J. and Wu, R., J. Magn. Magn. Mater. 100, 497 (1992).CrossRefGoogle Scholar
20.Tang, S. P., Freeman, A. J., and Olson, G. B. (unpublished).Google Scholar
21.Gelatt, C. D., Williams, J.A.R., and Moruzzi, V.L., Phys. Rev. B 27, 2005 (1983).CrossRefGoogle Scholar
22.Jaswal, S. S., Phys. Rev. B 34, 8937 (1986).CrossRefGoogle Scholar
23.Briant, C. L. and Messmer, R. P., Philos. Mag. B 42, 569 (1980).CrossRefGoogle Scholar
24.Eberhart, M. E. and MacLaren, J. M., in Innovations in Ultrahigh-strength Steel Technology, edited by Olson, G. B., Azrin, M., and Wright, E. S., Sagamore Army Materials Research Conference Proceedings: 34th (1990), p. 693.Google Scholar
25.Egert, B. and Panzner, G., Surf. Sci. 118, 345 (1982).CrossRefGoogle Scholar