Hostname: page-component-745bb68f8f-s22k5 Total loading time: 0 Render date: 2025-01-10T23:58:01.175Z Has data issue: false hasContentIssue false

On the deposition mechanism of Al2O3 in the CVI process for forming ceramic composites

Published online by Cambridge University Press:  31 January 2011

Nyan-Hwa Tai
Affiliation:
Center for Composite Materials, Department of Mechanical Engineering and Materials Science Program, University of Delaware, Newark, Delaware 19716
Tsu-Wei Chou
Affiliation:
Center for Composite Materials, Department of Mechanical Engineering and Materials Science Program, University of Delaware, Newark, Delaware 19716
Get access

Abstract

Chemical vapor infiltration (CVI) is a relatively new fabrication method for forming ceramic composites. The vapor deposition mechanism is determined by the reaction pressure and temperature, as well as the concentration and composition of the reactants. This commentary discusses two mechanisms for the deposition of alumina from AlCl3–H2–CO2 gas mixtures, and it explains that the reaction of the gas reactants on the substrate surface is a highly feasible deposition mechanism of the CVI process for forming alumina matrix composites. Comments are also made regarding a recent publication of Middleman in the Journal of Materials Research.

Type
Comments
Copyright
Copyright © Materials Research Society 1990

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Naslain, R., Hagenmuller, P., Christin, F., Heraud, L., and Choury, J. J., Proc. ICCM-3, Advances in Composite Materials, Paris (Pergamon Press, Oxford, 1980), Vol. 2, p. 1084.CrossRefGoogle Scholar
2Colmet, R., L'Hermitte-Sebire, I., and Naslain, R., Adv. Ceram. Mater. 1 (2), 185 (1986).CrossRefGoogle Scholar
3Stinton, D. P., Besmann, T. M., and Lowden, R. A., Am. Ceram. Soc. Bull. 67 (2), 350 (1988).Google Scholar
4Wong, P. and Robinson, M., J. Am. Ceram. Soc. 70, 907 (1987).Google Scholar
5ven den Brekel, C. H. J., Fouville, R. M. M., Straten, P. J. M. ven der, and Verspui, G., Proc. 8th Int. on CVD, 142 (1981).Google Scholar
6Tai, N. H. and Chou, T. W., J. Am. Ceram. Soc. 72 (3), 414 (1989).CrossRefGoogle Scholar
7Rossignol, J-Y., Langlais, F., and Naslain, R., Proc. 9th Int. on CVD, 596 (1984).Google Scholar
8Rossignol, J-Y., Dissertation, Univ. of Bordeaux, France (1985).Google Scholar
9Middleman, S., J. Mater. Res. 4, 1515 (1989).CrossRefGoogle Scholar
10Kuiper, A. E. T., ven den Brekel, C. J. H., de Groot, J., and Veltkamp, G. W., J. Electrochem. Soc. 129 (10), 2288 (1982).CrossRefGoogle Scholar
11Choi, S. W., Kim, C., Kim, J. G., and Chun, J. S., Proc. 9th Int. on CVD, 233 (1984).Google Scholar
12Amenomiya, Y., J. Catal. 46, 326 (1977).CrossRefGoogle Scholar
13Amenomiya, Y., J. Catal. 55, 205 (1978).CrossRefGoogle Scholar
14Amenomiya, Y., J. Catal. 57, 64 (1979).CrossRefGoogle Scholar
15Fukuda, K., Noto, Y., Onishi, T., and Tamaru, K., Trans. Faraday Soc. 63, 3072 (1967).Google Scholar
16Pearson, R. M., J. Catal. 46, 279 (1977).CrossRefGoogle Scholar