Hostname: page-component-78c5997874-fbnjt Total loading time: 0 Render date: 2024-11-20T00:15:29.705Z Has data issue: false hasContentIssue false

Novel in situ production of smooth diamond films

Published online by Cambridge University Press:  31 January 2011

Donald R. Gilbert
Affiliation:
Materials Science and Engineering, University of Florida, Gainesville, Florida 32611
Dong-Gu Lee
Affiliation:
Materials Science and Engineering, University of Florida, Gainesville, Florida 32611
Rajiv K. Singh
Affiliation:
Materials Science and Engineering, University of Florida, Gainesville, Florida 32611
Get access

Extract

We have developed a unique method to produce smooth diamond films using a modified microwave plasma process system. This method consists of sequential in situ deposition and planarization in an electron cyclotron resonance plasma system. Diamond films were deposited to a thickness of 3.0 μm in this system at a pressure of 1.000 Torr from gas mixtures of methanol and hydrogen. Deposition was followed by planarization using a two-grid ion beam extraction process with a pure oxygen plasma at 10 mTorr. The average roughness of the diamond films so produced was as low as 30 nm, which was a factor of two lower than that of the as-deposited diamond films.

Type
Articles
Copyright
Copyright © Materials Research Society 1998

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Tokura, C., Yang, F., and Yoshikawa, M., Thin Solid Films 212, 49 (1992).CrossRefGoogle Scholar
2.Zhao, T., Grogan, D. F., Bovard, B. G., and Macleod, H. A., Appl. Opt. 31, 1483 (1992).Google Scholar
3.Hirata, A., Tokura, H. and Yoshikawa, M., Thin Solid Films 212, 43 (1992).CrossRefGoogle Scholar
4.Lee, D. G. and Singh, R. K., in Beam-Solid Interactions for Materials Synthesis and Characterization, edited by Luzzi, D. E., Heinz, T. F., Iwaki, M., and Jacobson, D. C. (Mater. Res. Soc. Symp. Proc. 354, Pittsburgh, PA, 1995), p. 699.Google Scholar
5.Lee, D. G., Gilbert, D. R., and Singh, R. K., J. Electron. Mater. (1997).Google Scholar
6.Maeda, H., Ohtsubo, K., Irie, M., Ohya, N., Kusakabe, K., and Morooka, S., J. Mater. Res. 10, 3115 (1995).CrossRefGoogle Scholar
7.Makita, H., Nishimura, K., Jiang, N., Hatta, A., Ito, T., and Hiraki, A., Thin Solid Films 281, 279 (1996).CrossRefGoogle Scholar
8.Kawarada, H., Mar, K. S., and Hiraki, A., Jpn. J. Appl. Phys. 26, L1032 (1987).CrossRefGoogle Scholar
9.Lax, B., Allis, W. P., and Brown, S. C., J. Appl. Phys. 21, 1297 (1950).CrossRefGoogle Scholar
10.Singh, R. K., Gilbert, D. R., and Laveigne, J., Appl. Phys. Lett. 69, 371 (1996).Google Scholar
11.Singh, R. K., Gilbert, D. R., Fitz-Gerald, J., Harkness, S., and Lee, D. G., Science 272, 396 (1996).CrossRefGoogle Scholar
12.Singh, R. K., Gilbert, D., Tellshow, R., Holloway, P. H., Ochoa, R., Simmons, J. H., and Koba, R., Appl. Phys. Lett. 61, 2863 (1992).CrossRefGoogle Scholar
13.Gilbert, D. R., Singh, R., Clarke, R., and Murugkar, S., Appl. Phys. Lett. 70, 1974 (1997).CrossRefGoogle Scholar