Hostname: page-component-586b7cd67f-rdxmf Total loading time: 0 Render date: 2024-11-23T08:34:53.889Z Has data issue: false hasContentIssue false

A novel Ba2MgMoO6:Eu3+ orange-red phosphor: Photoluminescence properties and mechanism of charge and energy transfer

Published online by Cambridge University Press:  29 October 2013

Shaoan Zhang
Affiliation:
School of Physics and Optoelectronic Engineering, Guangdong University of Technology, Guangzhou 510006, People's Republic of China
Yihua Hu*
Affiliation:
School of Physics and Optoelectronic Engineering, Guangdong University of Technology, Guangzhou 510006, People's Republic of China
Li Chen
Affiliation:
School of Physics and Optoelectronic Engineering, Guangdong University of Technology, Guangzhou 510006, People's Republic of China
Xiaojuan Wang
Affiliation:
School of Physics and Optoelectronic Engineering, Guangdong University of Technology, Guangzhou 510006, People's Republic of China
Guifang Ju
Affiliation:
School of Physics and Optoelectronic Engineering, Guangdong University of Technology, Guangzhou 510006, People's Republic of China
Yan Fan
Affiliation:
School of Physics and Optoelectronic Engineering, Guangdong University of Technology, Guangzhou 510006, People's Republic of China
*
a)Address all correspondence to this author. e-mail: [email protected]
Get access

Abstract

A novel Ba2MgMoO6:Eu3+ orange-red phosphor was synthesized by the Pechini method and characterized by x-ray diffraction. Photoluminescence properties of BaMgMoO6:Eu3+ phosphors have been represented in the excitation and emission spectra. The charge transfer (CT) band of Ba2MgMoO6 host is situated at near-ultraviolet (UV) region, whose central wave length and bandwidth are 394 and 80 nm, respectively. And it matches well the emission wave length from near-UV light emitting diodes (LEDs). The most intensive emission of 5D07F1 (598 nm) of Eu3+ in Ba2MgMoO6:Eu3+ is much narrow with a full width at half-maximum less than 2 nm under excitation with either CT band or 394 nm. And a low concentration quenching occurs in Ba2MgMoO6:Eu3+, and the optimal doping concentration is about 0.05. The mechanism of charge and energy transfer from Ba2MgMoO6 host to Eu3+ is proposed and analyzed on the basis of its crystal structure. In a word, Ba2MgMoO6:Eu3+ may be a promising orange-red component for near UV white LEDs.

Type
Articles
Copyright
Copyright © Materials Research Society 2013 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Pimputkar, S., Speck, J.S., DenBaars, S.P., and Nakamura, S.: Prospects for LED lighting. Nat. Photonics 3, 18 (2009).CrossRefGoogle Scholar
Liu, W.R., Huang, C.H., Wu, C.P., Chiu, Y.C., Ye, Y.T., and Chen, T.M.: High efficiency and high color purity blue-emitting NaSrBO3:Ce3+ phosphor for near-UV light-emitting diodes. J. Mater. Chem. 21, 6869 (2011).CrossRefGoogle Scholar
Lin, C.C., Xiao, Z.R., Guo, G.Y., Chan, T.S., and Liu, R.S.: Versatile phosphate phosphors ABPO4 in white light-emitting diodes: Collocated characteristic analysis and theoretical calculations. J. Am. Chem. Soc. 132, 3020 (2010).CrossRefGoogle ScholarPubMed
Sivakumar, V. and Varadaraju, U.V.: Synthesis, phase transition and photoluminescence studies on Eu3+-substituted double perovskites: A novel orange-red phosphor for solid-state lighting. J. Solid State Chem. 181, 3344 (2008).CrossRefGoogle Scholar
Yan, S.X., Zhang, J.H., Zhang, X., Lu, S.Z., Ren, X.G., Nie, Z.G., and Wang, X.J.: Enhanced red emission in CaMoO4:Bi3+, Eu3+. J. Phys. Chem. C 111, 13256 (2007).CrossRefGoogle Scholar
Du, H.Y., Sun, J.F., Xia, Z.G., and Sun, J.Y.: Luminescence properties of a new green emitting Eu2+-doped barium chlorosilicate phosphor. Appl. Phys. B 96, 459 (2009).CrossRefGoogle Scholar
Li, Y.Q., van Steen, J.E.J., van Krevel, J.W.H., Botty, G., Delsing, A.C.A., DiSalvo, F.J., de With, G., and Hintzen, H.T.: Luminescence properties of red-emitting M2Si5N8:Eu2+ (M = Ca, Sr, Ba) LED conversion phosphors. J. Alloys Compd. 417, 273 (2006).CrossRefGoogle Scholar
Xie, R.J., Hirosaki, N., Sakuma, K., and Kimura, N.: White light-emitting diodes (LEDs) using (oxy) nitride phosphors. J. Phys. D: Appl. Phys. 41, 144013 (2008).CrossRefGoogle Scholar
Watanabe, H. and Kijima, N.: Crystal structure and luminescence properties of SrxCa1−xAlSiN3:Eu2+ mixed nitride phosphors. J. Alloys Compd. 475, 434 (2009).CrossRefGoogle Scholar
Pang, M.L., Lin, J., and Yu, M.: Fabrication and luminescent properties of rare earths-doped Gd2(WO4)3 thin film phosphors by Pechini sol–gel process. J. Solid State Chem. 177, 2237 (2004).CrossRefGoogle Scholar
Rao, R.P.: Preparation and characterization of fine-grain yttrium‐based phosphors by sol-gel process. J. Electrochem. Soc. 143, 189 (1996).CrossRefGoogle Scholar
Neeraj, S., Kijima, N., and Cheetham, A.K.: Novel red phosphors for solid-state lighting: the system NaM(WO4)2−x(MoO4)x:Eu3+ (M=Gd, Y, Bi). Chem. Phys. Lett. 387, 2 (2004).CrossRefGoogle Scholar
Tian, Y., Qi, X.H., Wu, X.W., Hua, R.N., and Chen, B.J.: Luminescent properties of Y2(MoO4)3:Eu3+ red phosphors with flowerlike shape prepared via coprecipitation method. J. Phys. Chem. C 113, 10767 (2009).CrossRefGoogle Scholar
Zheng, Y.H., You, H.P., Liu, K., Song, Y.H., Jia, G., Huang, Y.J., Yang, M., Zhang, L.H., and Ning, G.: Facile selective synthesis and luminescence behavior of hierarchical NaY(WO4)2:Eu3+ and Y6WO12:Eu3+. Cryst. Eng. Commun. 13, 3001 (2011).CrossRefGoogle Scholar
Shannon, R.D. and Prewitt, C.T.: Effective ionic radii in oxides and fluorides. Acta Crystallogr. 25, 925 (1969).CrossRefGoogle Scholar
Anderson, M.T., Greenwood, K.B., Taylor, G.A., and Poeppelmeier, K.R.: B-cation arrangements in double perovskites. Prog. Solid State Chem. 22, 197 (1993).CrossRefGoogle Scholar
Besse, J.P., Wathle, M., and Baud, G.: Chimie Minérale. Pérovskites lacunaires du type A2MgMo(VI-2x)O6-x. C. R. Seances Acad. Sci., Ser. C. 272, 545 (1971).Google Scholar
Su, Q.: Chemistry of Rare Earths (Science and Technology Publishing Company, Henan, 1996).Google Scholar
Shigeo, S. and William, M.: Phosphor Handbook (CRC Press, Washington, DC, 1998).Google Scholar
Blasse, G. and Grabmaier, B.C.: Luminescent Materials (Springer-Verlag, Berlin, Germany, 1994).CrossRefGoogle Scholar
Van Uitert, L.G. and Iida, S.: Quenching interactions between rare‐earth ions. J. Chem. Phys. 37, 986 (1962).CrossRefGoogle Scholar
Dexter, D.L. and Schulman, J.H.: Theory of concentration quenching in inorganic phosphors. J. Chem. Phys. 22, 1063 (1954).CrossRefGoogle Scholar
Sivakumar, V. and Varadaraju, U.V.: A promising orange-red phosphor under near UV excitation. Electrochem. Solid-State Lett. 9, H35 (2006).CrossRefGoogle Scholar
Bode, J.H.G. and Van Oosterhout, A.B.: Defect luminescence of ordered perovskites A2BWO6. J. Lumin. 10, 237 (1975).CrossRefGoogle Scholar
Mikhailik, V.B., Kraus, H., Miller, G., Mykhaylyk, M.S., and Wahl, D.: Luminescence of CaWO4, CaMoO4, and ZnWO4 scintillating crystals under different excitations. J. Appl. Phys. 97, 083523 (2005).CrossRefGoogle Scholar
Dexter, D.L.: A theory of sensitized luminescence in solids. J. Chem. Phys. 21, 836 (1953).CrossRefGoogle Scholar
Blasse, G. and Bril, A.: Investigations of Tb3+-activated phosphors. Philips Res. Rep. 22, 481 (1967).Google Scholar
Blasse, G.: On the Eu3+ fluorescence of mixed metal oxides. IV. The photoluminescent efficiency of Eu3+-activated Oxide. J. Chem. Phys. 45, 2356 (1966).CrossRefGoogle Scholar
Hu, Y., Zhuang, W., Ye, H., Wang, D., Zhang, S., and Huang, X.: A novel red phosphor for white light emitting diodes. J. Alloys Compd. 390, 226 (2005).CrossRefGoogle Scholar
Parchur, A.K., Ningthoujam, R.S., Rai, S.B., Okram, G.S., Singh, R.A., Tyagi, M., Gadkari, S.C., Tewari, R., and Vatsa, R.K.: Luminescence properties of Eu3+ doped CaMoO4 nanoparticles. Dalton Trans. 40, 7595 (2011).CrossRefGoogle ScholarPubMed
Hou, Z.Y., Chai, R.T., Zhang, M.L., Zhang, C.M., Chong, P., Xu, Z.H., Li, G.G., and Lin, J.: Fabrication, and luminescence properties of one-dimensional CaMoO4:Ln3+ (Ln = Eu, Tb, Dy) nanofibers via electrospinning process. Langmuir 25, 12340 (2009).CrossRefGoogle ScholarPubMed
Yang, Y.L., Li, X.M., Feng, W.L., Li, W.L., and Tao, C.Y.: Synthesis and characteristic of CaMoO4: Eu3+ red phosphor for W-LED by co-precipitation. J. Inorg. Mater. 25, 1015 (2010).CrossRefGoogle Scholar
Xie, A., Yuan, X.M., Hai, S.J., Wang, J.J., Wang, F.X., and Li, L.: Enhancement emission intensity of CaMoO4: Eu3+, Na+ phosphor via Bi co-doping and Si substitution for application to white LEDs. J. Phys. D: Appl. Phys. 42, 105107 (2009).CrossRefGoogle Scholar
Meng, Q.Y., Chen, B.J., Xu, W., Yang, Y.M., Zhao, X.X., Di, W.H., Lu, S.Z., Wang, X.J., Sun, J.S., Cheng, L.H., Yu, T., and Peng, Y.: Size-dependent excitation spectra and energy transfer in Tb3+-doped Y2O3 nanocrystalline. J. Appl. Phys. 102, 093505 (2007).CrossRefGoogle Scholar