Hostname: page-component-745bb68f8f-kw2vx Total loading time: 0 Render date: 2025-01-11T07:12:37.488Z Has data issue: false hasContentIssue false

Novel approaches for low temperature sintering of inkjet-printed inorganic nanoparticles for roll-to-roll (R2R) applications

Published online by Cambridge University Press:  01 February 2013

Jolke Perelaer*
Affiliation:
Laboratory of Organic and Macromolecular Chemistry, Friedrich-Schiller-University Jena, D-07743 Jena, Germany; Jena Center for Soft Matter, Friedrich-Schiller-University Jena, D-07743 Jena, Germany; and Dutch Polymer Institute (DPI), 5600 MB Eindhoven, Netherlands
Ulrich S. Schubert*
Affiliation:
Laboratory of Organic and Macromolecular Chemistry, Friedrich-Schiller-University Jena, D-07743 Jena, Germany; Jena Center for Soft Matter, Friedrich-Schiller-University Jena, D-07743 Jena, Germany; and Dutch Polymer Institute (DPI), 5600 MB Eindhoven, Netherlands
*
a)Address all correspondence to these authors. e-mail: [email protected]
Get access

Abstract

Within the last decade, inkjet printing technology has developed from only a text and graphic industry to a major topic of scientific research and development. Inkjet printing can be used as a highly reproducible noncontact patterning technique to print at high speeds either small or large areas with high quality features; it requires only small amounts of functional materials, which immediately lower production costs. Furthermore, inkjet printing reduces the amount of processing steps due to its additive technique of materials deposition, which further decreases productions costs. This contribution provides a literature survey covering the latest results in low temperature sintering inkjet-printed metal precursor materials in a fast and efficient manner, aiming for roll-to-roll processing. The prepared features can be used as interconnects and contacts for microelectronic applications, including organic light-emitting diodes, organic photovoltaics, and radio frequency identification tags.

Type
Invited Feature Paper
Copyright
Copyright © Materials Research Society 2013

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

IDTechEx: http://www.IDTechEx.com/pe (accessed April 3, 2012).Google Scholar
Subramanian, V., Frechet, J.M.J., Chang, P.C., Huang, D.C., Lee, J.B., Molesa, S.E., Murphy, A.R., Redinger, D.R., and Volkman, S.K.: Progress toward development of all-printed RFID tags: Materials, processes, and devices. Proc. IEEE 93, 1330 (2005).CrossRefGoogle Scholar
Woo, K., Bae, C., Jeong, Y., Kim, D., and Moon, J.: Inkjet-printed Cu source/drain electrodes for solution-deposited thin film transistors. J. Mater. Chem. 20, 3877 (2010).CrossRefGoogle Scholar
Liberski, A.R., Delaney, J.T., Liberska, A., Perelaer, J., Schwarz, M., Schüler, T., Möller, R., and Schubert, U.S.: Printed conductive features for DNA chip applications prepared on PET without sintering. RSC Adv. 2, 2308 (2012).CrossRefGoogle Scholar
Perelaer, J., Smith, P.J., Mager, D., Soltman, D., Volkman, S.K., Subramanian, V., Korvink, J.G., and Schubert, U.S.: Printed electronics: The challenges involved in printing devices, interconnects, and contacts based on inorganic materials. J. Mater. Chem. 20, 8446 (2010).CrossRefGoogle Scholar
Helgesen, M., Sondergaard, R., and Krebs, F.C.: Advanced materials and processes for polymer solar cell devices. J. Mater. Chem. 20, 36 (2010).CrossRefGoogle Scholar
Singh, M., Haverinen, H.M., Dhagat, P., and Jabbour, G.E.: Inkjet printing - process and its applications. Adv. Mater. 22, 673 (2010).CrossRefGoogle ScholarPubMed
Kamyshny, A., Steinke, J., and Magdassi, S.: Metal-based inkjet inks for printed electronics. Open Appl. Phys. J. 4, 19 (2011).CrossRefGoogle Scholar
Dearden, A.L., Smith, P.J., Shin, D.Y., Reis, N., Derby, B., and O’Brien, P.: A low curing temperature silver ink for use in ink-jet printing and subsequent production of conductive tracks. Macromol. Rapid Commun. 26, 315 (2005).CrossRefGoogle Scholar
Gamerith, S., Klug, A., Scheiber, H., Scherf, U., Moderegger, E., and List, E.J.W.: Direct ink-jet printing of Ag-Cu nanoparticle and Ag-precursor based electrodes for OFET applications. Adv. Funct. Mater. 17, 3111 (2007).CrossRefGoogle Scholar
Buffat, P. and Borel, J.P.: Size effect on melting temperature of gold particles. Phys. Rev. A 13, 2287 (1976).CrossRefGoogle Scholar
Allen, G.L., Bayles, R.A., Gile, W.W., and Jesser, W.A.: Small particle melting of pure metals. Thin Solid Films 144, 297 (1986).CrossRefGoogle Scholar
Perelaer, J., de Laat, A.W.M., Hendriks, C.E., and Schubert, U.S.: Inkjet-printed silver tracks: low temperature curing and thermal stability investigation. J. Mater. Chem. 18, 3209 (2008).CrossRefGoogle Scholar
Kang, S-J.L.: Sintering: Densification, Grain Growth, and Microstructure, 1st ed. (Elsevier Butterworth-Heinemann, Burlington, 2005), pp. 3777.Google Scholar
Goeke, R.S. and Datye, A.K.: Model oxide supports for studies of catalyst sintering at elevated temperatures. Top. Catal. 46, 3 (2007).CrossRefGoogle Scholar
Ingham, B., Lim, T.H., Dotzler, C.J., Henning, A., Toney, M.F., and Tilley, R.D.: How nanoparticles coalesce: An in situ study of Au nanoparticle aggregation and grain growth. Chem. Mater. 23, 3312 (2011).CrossRefGoogle Scholar
Volkman, S.K., Yin, S., Bakhishev, T., Puntambekar, K., Subramanian, V., and Toney, M.F.: Mechanistic studies on sintering of silver nanoparticles. Chem. Mater. 23, 4634 (2011).CrossRefGoogle Scholar
Greer, J.R. and Street, R.A.: Thermal cure effects on electrical performance of nanoparticle silver inks. Acta Mater. 55, 6345 (2007).CrossRefGoogle Scholar
Liang, L.H., Shen, C.M., Du, S.X., Liu, W.M., Xie, X.C., and Gao, H.J.: Increase in thermal stability induced by organic coatings on nanoparticles. Phys. Rev. B 70, 205419 (2004).CrossRefGoogle Scholar
Miettinen, J., Pekkanen, V., Kaija, K., Mansikkamäki, P., Mäntysalo, J., Mäntysalo, M., Niittynen, J., Pekkanen, J., Saviauk, T., and Rönkkä, R.: Inkjet printed system-in-package design and manufacturing. Microelectron. J. 39, 1740 (2008).CrossRefGoogle Scholar
Scandurra, A., Indelli, G.F., Sparta, N.G., Galliano, F., Ravesi, S., and Pignataro, S.: Low-temperature sintered conductive silver patterns obtained by inkjet printing for plastic electronics. Surf. Interface Anal. 42, 1163 (2010).CrossRefGoogle Scholar
Huang, D., Liao, F., Molesa, S., Redinger, D., and Subramanian, V.: Plastic-compatible low resistance printable gold nanoparticle conductors for flexible electronics. J. Electrochem. Soc. 150, G412 (2003).CrossRefGoogle Scholar
Grouchko, M., Kamyshny, A., Mihailescu, C.F., Anghel, D.F., and Magdassi, S.: Conductive inks with a “built-in” mechanism that enables sintering at room temperature. ACS Nano 5, 3354 (2011).CrossRefGoogle ScholarPubMed
Reinhold, I., Hendriks, C.E., Eckardt, R., Kranenburg, J.M., Perelaer, J., Baumann, R.R., and Schubert, U.S.: Argon plasma sintering of inkjet printed silver tracks on polymer substrates. J. Mater. Chem. 19, 3384 (2009).CrossRefGoogle Scholar
Allen, M.L., Aronniemi, M., Mattila, T., Alastalo, A., Ojanperä, K., Suhonen, M., and Seppä, H.: Electrical sintering of nanoparticle structures. Nanotechnology 19, 175201 (2008).CrossRefGoogle ScholarPubMed
Leppäniemi, J., Aronniemi, M., Mattila, T., Alastalo, A., Allen, M., and Seppä, H.: Printed WORM memory on a flexible substrate based on rapid electrical sintering of nanoparticles. IEEE Trans. Electron Devices 58, 151 (2011).CrossRefGoogle Scholar
Yung, K.C., Gu, X., Lee, C.P., and Choy, H.S.: Ink-jet printing and camera flash sintering of silver tracks on different substrates. J. Mater. Process. Technol. 210, 2268 (2010).CrossRefGoogle Scholar
Kim, H.S., Dhage, S.R., Shim, D.E., and Hahn, H.T.: Intense pulsed light sintering of copper nanoink for printed electronics. Appl. Phys. A 97, 791 (2009).CrossRefGoogle Scholar
Ryu, J., Kim, H.S., and Hahn, H.T.: Reactive sintering of copper nanoparticles using intense pulsed light for printed electronics. J. Electron. Mater. 40, 42 (2011).CrossRefGoogle Scholar
Perelaer, J., de Gans, B-J., and Schubert, U.S.: Ink-jet printing and microwave sintering of conductive silver tracks. Adv. Mater. 18, 2101 (2006).CrossRefGoogle Scholar
Perelaer, J., Klokkenburg, M., Hendriks, C.E., and Schubert, U.S.: Microwave flash sintering of inkjet-printed silver tracks on polymer substrates. Adv. Mater. 21, 4830 (2009).CrossRefGoogle ScholarPubMed
Perelaer, J., Abbel, R., Wünscher, S., Jani, R., van Lammeren, T., and Schubert, U.S.: Roll-to-roll compatible sintering of inkjet printed features by photonic and microwave exposure: From non-conductive ink to 40% bulk silver conductivity in less than 15 seconds. Adv. Mater. 24, 2620 (2012).CrossRefGoogle ScholarPubMed
Perelaer, J., Jani, R., Grouchko, M., Kamyshny, A., Magdassi, S., and Schubert, U.S.: Plasma and microwave flash sintering of a tailored silver nanoparticle ink, yielding 60% bulk conductivity on cost-effective polymer foils. Adv. Mater. 24, 3993 (2012).CrossRefGoogle ScholarPubMed
Ko, S.H., Pan, H., Grigoropoulos, C.P., Luscombe, C.K., Frechet, J.M.J., and Poulikakos, D.: All-inkjet-printed flexible electronics fabrication on a polymer substrate by low-temperature high-resolution selective laser sintering of metal nanoparticles. Nanotechnology 18, 345202 (2007).CrossRefGoogle Scholar
Lesyuk, R., Jillek, W., Bobitski, Y., and Kotlyarchuk, B.: Low-energy pulsed laser treatment of silver nanoparticles for interconnects fabrication by ink-jet method. Microelectron. Eng. 88, 318 (2011).CrossRefGoogle Scholar
Kumpulainen, T., Pekkanen, J., Valkama, J., Laakso, J., Tuokko, R., and Mäntysalo, M.: Low temperature nanoparticle sintering with continuous wave and pulse lasers. Opt. Laser Technol. 43, 570 (2011).CrossRefGoogle Scholar
Worsley, D., Cherrington, M., Claypole, T.C., Deganello, D., Mabbett, I., and Watson, T.: Ultrafast near-infrared sintering of a slot-die coated nano-silver conducting ink. J. Mater. Chem. 21, 7562 (2011).Google Scholar
Tobjörk, D., Aarnio, H., Pulkkinen, P., Bollstrom, R., Maattanen, A., Ihalainen, P., Makela, T., Peltonen, J., Toivakka, M., Tenhu, H., and Osterbacka, R.: IR-sintering of ink-jet printed metal-nanoparticles on paper. Thin Solid Films 520, 2949 (2012).CrossRefGoogle Scholar
Coutts, M.J., Cortie, M.B., Ford, M.J., and McDonagh, A.M.: Rapid and controllable sintering of gold nanoparticle inks at room temperature using a chemical agent. J. Phys. Chem. C 113, 1325 (2009).CrossRefGoogle Scholar
Magdassi, S., Grouchko, M., Berezin, O., and Kamyshny, A.: Triggering the sintering of silver nanoparticles at room temperature. ACS Nano 4, 1943 (2010).CrossRefGoogle ScholarPubMed
Jahn, S.F., Blaudeck, T., Baumann, R.R., Jakob, A., Ecorchard, P., Ruffer, T., Lang, H., and Schmidt, P.: Inkjet printing of conductive silver patterns by using the first aqueous particle-free MOD ink without additional stabilizing ligands. Chem. Mater. 22, 3067 (2010).CrossRefGoogle Scholar
Xie, G.Q., Ohashi, O., Yamaguchi, N., and Wang, A.R.: Effect of surface oxide films on the properties of pulse electric-current sintered metal powders. Metall. Mater. Trans. A 34, 2655 (2003).CrossRefGoogle Scholar
Groza, J.R., Risbud, S.H., and Yamazaki, K.: Plasma activated sintering of additive-free AlN powders to near-theoretical density in 5 minutes. J. Mater. Res. 7, 2643 (1992).CrossRefGoogle Scholar
Albert, A.D., Becker, M.F., Keto, J.W., and Kovar, D.: Low temperature, pressure-assisted sintering of nanoparticulate silver films. Acta Mater. 56, 1820 (2008).CrossRefGoogle Scholar
van Hest, M.F.A.M., Curtis, C.J., Miedaner, A., Pasquarelli, R.M., Kaydanova, T., Hersh, P. and Ginley, D.S.: Direct-write contacts: Metallization and contact formation, in 33rd IEEE Photovoltaic Specialists Conference, San Diego, CA, 2008. 04922798.Google Scholar
Lee, H.M., Choi, S.Y., Kim, K.T., Yun, J.Y., Jung, D.S., Park, S.B., and Park, J.: A novel solution-stamping process for preparation of a highly conductive aluminum thin film. Adv. Mater. 23, 5524 (2011).CrossRefGoogle ScholarPubMed
Grouchko, M., Kamyshny, A., and Magdassi, S.: Formation of air-stable copper-silver core-shell nanoparticles for inkjet printing. J. Mater. Chem. 19, 3057 (2009).CrossRefGoogle Scholar
Smith, P.J. and Morrin, A.: Reactive inkjet printing. J. Mater. Chem. 22, 10965 (2012).CrossRefGoogle Scholar
Li, D.P., Sutton, D., Burgess, A., Graham, D., and Calvert, P.D.: Conductive copper and nickel lines via reactive inkjet printing. J. Mater. Chem. 19, 3719 (2009).CrossRefGoogle Scholar
Kao, Z.K., Hung, Y.H., and Liao, Y.C.: Formation of conductive silver films via inkjet reaction system. J. Mater. Chem. 21, 18799 (2011).CrossRefGoogle Scholar