Hostname: page-component-cd9895bd7-jkksz Total loading time: 0 Render date: 2024-12-23T12:19:49.490Z Has data issue: false hasContentIssue false

A novel approach to paint sludge recycling: Reclaiming of paint sludge components as ceramic composites and their applications in reinforcement of metals and polymers,

Published online by Cambridge University Press:  31 January 2011

S. Nakouzi
Affiliation:
Chemistry Department, Ford Motor Company, P.O. Box 2053, MD 3083/SRL, Dearborn, Michigan 48121
D. Mielewski
Affiliation:
Manufacturing Systems Department, Ford Motor Company, P.O. Box 2053, MD 3135/SRL, Dearborn, Michigan 48121
J. C. Ball
Affiliation:
Chemistry Department, Ford Motor Company, P.O. Box 2053, MD 3083/SRL, Dearborn, Michigan 48121
B. R. Kim
Affiliation:
Chemistry Department, Ford Motor Company, P.O. Box 2053, MD 3083/SRL, Dearborn, Michigan 48121
I. T. Salemeen
Affiliation:
Chemistry Department, Ford Motor Company, P.O. Box 2053, MD 3083/SRL, Dearborn, Michigan 48121
D. Bauer
Affiliation:
Manufacturing Systems Department, Ford Motor Company, P.O. Box 2053, MD 3135/SRL, Dearborn, Michigan 48121
C. K. Narula
Affiliation:
Chemistry Department, Ford Motor Company, P.O. Box 2053, MD 3083/SRL, Dearborn, Michigan 48121
Get access

Extract

About 15 × 106 lbs of paint sludge, produced every year at Ford plants, is disposed of in landfills. An economical alternative to this disposal method, which reclaims or recycles components of paint sludge, is highly desirable to preserve valuable natural resources. Here, we describe an alternative to landfill disposal whereby paint sludge is converted into ceramic composites that can be used as reinforcing materials. The conversion of paint sludge to ceramic composite, I/N2/600, is achieved by pyrolysis under a nitrogen atmosphere. Two additional composites, labeled I/N2/1000 and I/NH3/1000, respectively, are prepared by sintering I/600 at 1000 °C under N2 and NH3. All three composites contain crystalline CaTiO3, BaTiO3, TiO2, amorphous alumina, and carbon. I/NH3/1000 contains an additional crystalline phase of titanium nitride. The application of these composites as reinforcing materials is demonstrated in the fabrication of representative metal matrix composites (MMC's) and reinforced plastic components.

Type
Articles
Copyright
Copyright © Materials Research Society 1998

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Amsoneit, N., Water Sci. Technol. 29, 235 (1994);CrossRefGoogle Scholar
Pledger, J. T. Jr., Water Sci. Technol. 29, 251 (1994);CrossRefGoogle Scholar
James, J. L. and Radding, S. B., Solid Wastes and Residues (ACS Symposium Series 76, American Chemical Society, Washington, DC, 1978);Google Scholar
James, J. L., Chem. Eng. 85, 87 (1978).Google Scholar
2.Conner, J. R., Chemical Fixation and Solidification of Hazardous Wastes (Van Nostrand Reinhold, New York, 1990).Google Scholar
3.Aziz, M. A., Water Sci. Technol. 20, 211 (1988).CrossRefGoogle Scholar
4.Sowieja, D. and Schaub, M., Water Sci. Technol. 29, 153 (1994).CrossRefGoogle Scholar
5.Goldstein, J., Recycling (Schocken Books, New York, 1979).Google Scholar
6.Agarwal, K. B., U.S. Patent 5,198,018 (1993);Google Scholar
U.S. Patent 5,129,995 (1992).Google Scholar
7.Kim, B., 67th Annual Conference of Water Environment Federation, Chicago, IL, Oct. 15–19, 1994, Paper No. AC 945105;Google Scholar
Kim, B. R., Kalis, E. M., Salmeen, I. T., Kruse, C. W., Demir, I., Carlson, S. L., and Rostam-Abadi, M., J. Environ. Eng. 6, 532 (1996).CrossRefGoogle Scholar
8.Mukhopadhyay, S. M. and Chen, T. C. S., J. Mater. Res. 10, 502 (1995);CrossRefGoogle Scholar
Pilleux, M. E. and Fuenzalida, V. M., J. Appl. Phys. 74, 4664 (1993);CrossRefGoogle Scholar
Koenig, M. F. and Grant, J. T., Appl. Surf. Sci. 20, 481 (1985);CrossRefGoogle Scholar
Murata, M., Wakino, K., and Ikeda, S., J. Electron Spectrosc. Related Phenomena 6, 2307 (1975).CrossRefGoogle Scholar
9.Barr, T. L., J. Vac. Sci. Technol. A 9, 1793 (1991).CrossRefGoogle Scholar
10.Lu, J-P. and Raj, R., J. Mater. Res. 6, 1913 (1991);CrossRefGoogle Scholar
Wagner, C. D., Riggs, W. M., Davis, L. E., Moulder, J. F., and Muilenberg, G. E., Handbook of X-ray Photoelectron Spectroscopy (Physical Electronics Division, Perkin-Elmer Corporation, Eden Prairie, MN, 1979).Google Scholar
11.Bertoncello, R., Casagrande, A., Casarin, M., Glisenti, A., Lanzoni, E., Mirenghi, L., and Tondello, E., SIA, Surf. Interface Anal. 18, 525 (1992);CrossRefGoogle Scholar
Fix, R., Gordon, R. G., and Hoffman, D. M., Chem. Mater. 3, 1138 (1991).CrossRefGoogle Scholar
12.Robinson, K. S. and Sherwood, P. M. A., SIA, Surf. Interface Anal. 6, 261 (1984);CrossRefGoogle Scholar
Heide, N., Siemensmeyer, B., and Schultze, J. W., SIA, Surf. Interface Anal. 19, 423 (1992).CrossRefGoogle Scholar
13.Nitta, T., Nagase, K., Sasaki, H., and Hayakawa, S., J. Am. Ceram. Soc. 54 (4), 220 (1971).CrossRefGoogle Scholar