Hostname: page-component-745bb68f8f-cphqk Total loading time: 0 Render date: 2025-01-11T04:17:48.846Z Has data issue: false hasContentIssue false

Non-equilibrium tunneling through Au–C20–Au molecular bridge using density functional theory–non-equilibrium Green function approach

Published online by Cambridge University Press:  10 May 2016

Milanpreet Kaur*
Affiliation:
Department of Electronics Technology, Guru Nanak Dev University, Amritsar, Punjab-143005, India
Ravinder Singh Sawhney*
Affiliation:
Department of Electronics Technology, Guru Nanak Dev University, Amritsar, Punjab-143005, India
Derick Engles*
Affiliation:
Department of Electronics Technology, Guru Nanak Dev University, Amritsar, Punjab-143005, India
*
a)Address all correspondence to these authors. e-mail: [email protected]
Get access

Abstract

In this paper, we determine the electronic transport properties of Au–C20–Au molecular system under finite bias voltage using the non-equilibrium Green function and the density functional theory, along its localized pseudo atomic orbitals. Our aim is to peruse the various nanometer-scale transport properties and eventually predict the overall quantum transport behavior of this organic mesoscopic system. We investigate the density of states, transmission spectrum, molecular orbitals, current–voltage characteristics, rectification ratio, and differential conductance characteristics at discrete bias voltages to get the insight about various transport phenomena. The observed results elucidate that the quantum tunneling causes the electron transport in this molecular bridge and becomes prominent due to strong mechanical interactive coupling between the molecule and the electrodes having low HOMO–LUMO (highest occupied molecular orbital–lowest unoccupied molecular orbital) gap of 0.55 eV. We conclude that Au–C20–Au device exhibited metallic nature forming the current coulomb staircase with transition points at ±1 V and the quantum conductance of order 2G0 at low bias voltages.

Type
Articles
Copyright
Copyright © Materials Research Society 2016 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

Contributing Editor: Jürgen Eckert

References

REFERENCES

Feynman, R.P.: There's plenty of room at the bottom. Caltech Engg. Sci. 23(5), 22 (1960).Google Scholar
Kaur, M., Sawhney, R.S., and Engles, D.: Contemplating transport characteristics by augmenting the length of molecule. J. Multiscale Modell. 5(3), 1350010 (2013).CrossRefGoogle Scholar
Rakshit, T., Liang, G.C., Ghosh, A.W., and Datta, S.: Silicon-based molecular electronics. Nano Lett. 4, 1803 (2004).CrossRefGoogle Scholar
Liang, G.C. and Ghosh, A.W.: Identifying contact effects in electronic conduction through C60 on silicon. Phys. Rev. Lett. 95, 076403 (2005).CrossRefGoogle ScholarPubMed
Muralidharan, B., Ghosh, A.W., and Datta, S.: Probing electronic excitations in molecular conduction. Phys. Rev. B: Condens. Matter Mater. Phys. 73, 155410 (2006).Google Scholar
Chen, J., Wang, W., Reed, M.A., Rawlett, A.M., Price, D.W., and Tour, J.M.: Room-temperature negative differential resistance in nanoscale molecular junctions. Appl. Phys. Lett. 77(8), 1224 (2000).Google Scholar
Datta, S.: Electronic Transport in Mesoscopic Systems, 1st ed. (Cambridge Univ. Press, Cambridge, England, 1995); pp. 266268.CrossRefGoogle Scholar
Damle, P.S., Ghosh, A.W., and Datta, S.: From molecules to metallic wires: Unified description of molecular conduction. Phys. Rev. B: Condens. Matter Mater. Phys. 64, 201403 (2001).Google Scholar
Yang, Z., Wan, L., Yu, Y., Wei, Y., and Wang, J.: Electron transport through Al–ZnO–Al: An ab initio calculation. J. Appl. Phys. 108, 033704 (2010).Google Scholar
Wang, W., Lee, T., and Reed, M.A.: Mechanism of electron conduction in self-assembled alkanethiol monolayer devices. Phys. Rev. B: Condens. Matter Mater. Phys. 68, 035416 (2003).Google Scholar
Ke, S., Baranger, H.U., and Yang, W.: Contact atomic structure and electron transport through molecules. J. Chem. Phys. 122, 074704 (2005).Google Scholar
Kaur, M., Sawhney, R.S., and Engles, D.: Perusing quantum transport through geometric gold electrodes in flexible electronics. Quantum Matter 4(2), 182 (2015).Google Scholar
Andrews, D.Q., Cohen, R., Duyne, R.P.V., and Ratner, M.A.: Single molecule electron transport junctions: Charging and geometric effects on conductance. J. Chem. Phys. 125, 174718 (2006).CrossRefGoogle ScholarPubMed
Choi, Y.C., Kim, W.Y., Park, K., Tarakeshwar, P., Kim, K.S., Kim, T., and Lee, J.Y.: Role of molecular orbitals of the benzene in electronic nanodevices. J. Chem. Phys. 122, 094706 (2005).CrossRefGoogle ScholarPubMed
Kaur, M. and Sawhney, R.S.: Anatomizing electronic transport through saturated alkane molecule with disparate terminal elements. J. Multiscale Modell. 4(3), 1250011 (2012).Google Scholar
Kroto, H.W., Heath, J.R., O'Brien, S.C., Curl, R.F., and Smalley, R.E.: C60: Buckminsterfullerene. Nature 318, 162, (1985).Google Scholar
Krätschmer, W., Lamb, L.D., Fostiropoulos, K., and Huffman, D.R.: Solid C60: A new form of carbon. Nature 347, 354 (1990).Google Scholar
Guldi, D.M. and Martín, N.: Fullerenes: From Synthesis to Optoelectronic Properties (Kluwer Academic Publishers, Dordrecht, The Netherlands, 2002); pp. 121135.Google Scholar
Zheng, G., Irle, S., and Morokuma, K.: Performance of the DFTB method in comparison to DFT and semiempirical methods for geometries and energies of C20–C86 fullerene isomers. Chem. Phys. Lett. 412, 210 (2005).CrossRefGoogle Scholar
Paulus, B.: Electronic and structural properties of the cage-like molecules C20 to C36 . Phys. Chem. Chem. Phys. 5, 3364 (2003).CrossRefGoogle Scholar
Bendikovand, M., Wudl, F., and Perepichka, D.F.: Tetrathiafulvalenes, oligoacenenes, and their buckminsterfullerene derivatives: The brick and mortar of organic electronics. Chem. Rev. 104, 4891 (2004).Google Scholar
Rassat, A.: Chirality and symmetry aspects of spheroarenes, including fullerenes. Chirality 13, 395 (2001).Google Scholar
Lappas, A., Prassides, K., Vavekis, K., Arcon, D., Blinc, R., Cevc, P., Amato, A., Feyerherm, R., Gygax, F.N., and Schenck, A.: Spontaneous magnetic ordering in the fullerene charge-transfer salt (TDAE) C60 . Science, 267(5205), 1799 (1995).Google Scholar
Hebard, A.F., Rosseinsky, M.J., Haddon, R.C., Murphy, D.W., Glarum, S.H., Palstra, T.T.M., Ramirez, A.P., and Kortan, A.R.: Superconductivity at 18 K in potassium-doped C60 . Nature 350, 600 (1991).Google Scholar
Echegoyenand, L. and Echegoyen, L.E.: Electrochemistry of fullerenes and their derivatives. Acc. Chem. Res. 31, 593 (1998).CrossRefGoogle Scholar
Guldi, D.M.: Fullerenes: Three dimensional electron acceptor materials. Chem. Commun. 5, 321 (2000).Google Scholar
Prinzbach, H., Weiler, A., Landenberger, P., Wahl, F., Scott, L.T., Gelmont, M., Olevano, D., and Issendorff, B.V.: Gas-phase production and photoelectron spectroscopy of the smallest fullerene, C20 . Nature 407, 60 (2000).Google Scholar
Sattler, K.D.: Handbook of Nanophysics: Clusters and Fullerenes (CRC Press, Boca Raton, 2009); pp. 2836.Google Scholar
Roland, C., Larade, B., Taylor, J., and Guo, H.: Ab initio IV characteristics of short C20 chains. Phys. Rev. B: Condens. Matter Mater. Phys. 65, 041401(R) (2001).Google Scholar
Yamamoto, T., Watanabe, K., and Watanabe, S.: Electronic transport in fullerene C20 bridge assisted by molecular vibrations. Phys. Rev. Lett. 95, 065501 (2005).CrossRefGoogle ScholarPubMed
An, Y.P., Yang, C.L., Wang, M.S., Ma, X.G., and Wang, D.H.: First-principles study of structure and quantum transport properties of C20 fullerene. J. Chem. Phys. 131, 024311 (2009).CrossRefGoogle ScholarPubMed
An, Y.P., Yang, C.L., Wang, M.S., Ma, X.G., and Wang, D.H.: First-principles study of transport properties of endohedral Li@C20 metallofullerene. Curr. Appl. Phys. 10, 260 (2010).Google Scholar
Wang, L.H., Guo, Y., Tian, C.F., Song, X.P., and Ding, B.J.: Effect of the indices of crystal plane of gold electrodes on the transport properties of C20 fullerene. J. Appl. Phys. 107, 103702 (2010).Google Scholar
Ji, G., Li, D., Fang, C., Xu, Y., Zhai, Y., Cui, B., and Liu, D.: Effect of contact interface configuration on electronic transport in (C20)2-based molecular junctions. Phys. Lett. A 376, 773, (2012).CrossRefGoogle Scholar
Ivanov, V.K., Yu Kashenock, G., Polozkov, R.G., and Solov'yov, A.V.: Photoionization cross sections of the fullerenes C20 and C60 calculated in a simple spherical model. J. Phys. B: At., Mol. Opt. Phys. 34, L669 (2001).CrossRefGoogle Scholar
Xiang, D., Jeong, H., Kim, D., Lee, T., Cheng, Y., Wang, Q., and Mayer, D.: Three-terminal single-molecule junctions formed by mechanically controllable break junctions with side gating. Nano Lett. 13, 2809 (2013).Google Scholar
Kaur, M., Sawhney, R.S., and Engles, D.: To evince pure C24 as superconductoring mechanically controllable break junction configuration. In 2013 International Conference on Advanced Nanomaterials and Emerging Engineering Technologies (ICANMEET) (IEEE: Chennai, 2013); pp. 426430.CrossRefGoogle Scholar
Goel, A., Howard, J.B., and Vander Sande, J.B.: Size analysis of single fullerene molecules by electron microscopy. Carbon 42, 1907 (2004).CrossRefGoogle Scholar
Karakasidis, T.E. and Charitidis, C.A.: Multiscale modeling in nanomaterials science. Mater. Sci. Eng., C 27(5), 1082 (2007).Google Scholar
Ferreira, A. and Aphale, S.S.: A survey of modeling and control techniques for micro- and nanoelectromechanical systems. IEEE Trans. Syst. Man Cybern. C Appl. Rev. 41(3), 350 (2011).CrossRefGoogle Scholar
Brandbyge, M., Mozos, J.L., Ordejon, P., Taylor, J., and Stokbro, K.: Density-functional method for nonequilibrium electron transport. Phys. Rev. B: Condens. Matter Mater. Phys. 65, 165401 (2002).Google Scholar
Stokbro, K.: First-principles modeling of electron transport. J. Phys.: Condens. Matter 20, 064216 (2008).Google Scholar
Xue, M.Y., Datta, S., and Ratner, M.A.: First-principles based matrix-Green's function approach to molecular electronic devices: General formalism. Chem. Phys. 281, 151 (2002).CrossRefGoogle Scholar
Atomistix Tool Kit Manual version 12.2.0 (Copyright QuantumWise 2008–2015).Google Scholar
Perdew, J.P., Burke, K., and Ernzerhof, M.: Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865 (1996).CrossRefGoogle ScholarPubMed
Cho, Y., Kim, W.Y., and Kim, K.S.: Effect of electrodes on electronic transport of molecular electronic devices. J. Phys. Chem. A 113, 4100 (2009).Google Scholar
Kim, Y., Kheli, J.T., Schultz, P.A., and Goddard, W.A.: First-principles approach to the charge-transport characteristics of monolayer molecular-electronics devices: Application to hexanedithiolate devices. Phys. Rev. B: Condens. Matter Mater. Phys. 73, 235419 (2006).Google Scholar
Strange, M., Kristensen, S., Thygesen, K.S., and Jacobsen, K.W.: Benchmark density functional theory calculations for nanoscale conductance. J. Chem. Phys. 128, 114714 (2008).CrossRefGoogle ScholarPubMed
Troullier, N. and Martins, J.L.: Efficient pseudopotentials for plane-wave calculations. Phys. Rev. B: Condens. Matter Mater. Phys. 43, 1993 (1991).Google Scholar
ATK-tutorials: Why are so many k-points needed in the transport direction in a device calculation? (2014).Google Scholar
A detailed discussion is given in the supporting information.Google Scholar
Luo, J., Xue, Z.Q., Liu, W.M., Wu, J.L., and Yang, Z.Q.: Koopmans' theorem for large molecular systems within density functional theory. J. Phys. Chem. A 110, 12005 (2006).Google Scholar
Gianturco, F.A., Kashenock, G.Y., Lucchese, R.R., and Sanna, N.: Low-energy resonant structures in electron scattering from C20 fullerene. J. Chem. Phys. 116, 2811 (2002).Google Scholar
Cohen, R., Stokbro, K., Martin, J.M.L., and Ratner, M.A.: Charge transport in conjugated aromatic molecular junctions: Molecular conjugation and molecule–electrode coupling. J. Phys. Chem. C 111, 14893 (2007).CrossRefGoogle Scholar
Morkoc, H.: Advanced Semiconductors and Organic Nano-techniques (Academic Press, New York, 2003).Google Scholar
Song, H., Reed, M.A., and Lee, T.: Single molecule electronic devices. Adv. Mater. 23, 1583 (2011).Google Scholar
Durkan, C.: Current at the Nanoscale (Imperial College Press, London, 2007); pp. 1012.Google Scholar
Taylor, B.N. and Mohr, P.J.: Codata Value: Conductance quantum (2010). Available at: http://physics.nist.gov/cgi-bin/cuu/Value?conqu2e2sh. Retrieved 2016-02-08.Google Scholar
van Wees, B.J., van Houten, H., Beenakker, C.W.J., Williamson, J.G., Kouwenhoven, L.P., van der Marel, D., and Foxon, C.T.: Quantized conductance of point contacts in a two-dimensional electron gas. Phys. Rev. Lett. 60, 848 (1988).Google Scholar
Liang, W., Shores, M.P., Bockrath, M., Long, J.R., and Park, H.: Kondo resonance in a single-molecule transistor. Nature 417, 725 (2002).CrossRefGoogle Scholar
Park, J., Pasupathy, A.N., Goldsmith, J.I., Chang, C., Yaish, Y., Petta, J.R., Rinkoski, M., Sethna, J.P., Abrunã, H.D., McEuen, P.L., and Ralph, D.C.: Coulomb blockade and the Kondo effect in single-atom transistors. Nature 417, 722 (2002).CrossRefGoogle ScholarPubMed