Hostname: page-component-586b7cd67f-2brh9 Total loading time: 0 Render date: 2024-11-27T09:38:14.835Z Has data issue: false hasContentIssue false

Nitrogen plasma source ion implantation for corrosion protection of aluminum 6061-T4

Published online by Cambridge University Press:  31 January 2011

J. H. Booske
Affiliation:
Engineering Research Center for Plasma-Aided Manufacturing, University of Wisconsin–Madison, Madison, Wisconsin 53706-1608
L. Zhang
Affiliation:
Engineering Research Center for Plasma-Aided Manufacturing, University of Wisconsin–Madison, Madison, Wisconsin 53706-1608
W. Wang
Affiliation:
Engineering Research Center for Plasma-Aided Manufacturing, University of Wisconsin–Madison, Madison, Wisconsin 53706-1608
K. Mente
Affiliation:
Engineering Research Center for Plasma-Aided Manufacturing, University of Wisconsin–Madison, Madison, Wisconsin 53706-1608
N. Zjaba
Affiliation:
Engineering Research Center for Plasma-Aided Manufacturing, University of Wisconsin–Madison, Madison, Wisconsin 53706-1608
C. Baum
Affiliation:
Engineering Research Center for Plasma-Aided Manufacturing, University of Wisconsin–Madison, Madison, Wisconsin 53706-1608
J. L. Shohet
Affiliation:
Engineering Research Center for Plasma-Aided Manufacturing, University of Wisconsin–Madison, Madison, Wisconsin 53706-1608
Get access

Abstract

It is established that nitridation of aluminum (Al) 6061-T4 by plasma source ion implantation (PSII) can dramatically enhance the pitting corrosion resistance of this alloy in marine environments (i.e., chlorine-ion-bearing aqueous solutions or humid atmospheres). Corrosion tests and microstructure analyses establish that the mechanism for successful passivation against chloride-induced pitting corrosion involves the formation of a multilayered microstructure, including the presence of a continuous layer of aluminum-nitride (AlN). Important process variables are the implantation voltage and the nitrogen dose (or total implantation time), as these two variables establish the implanted nitrogen concentration. Too high or too low an implanted nitrogen concentration will not yield the continuous AlN layer required for good corrosion resistance. PSII is attractive for this application as it provides for uniform, conformal implantation of irregularly shaped objects without masking, beam rastering, or object rotation.

Type
Articles
Copyright
Copyright © Materials Research Society 1997

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Massiani, Y., Crousier, J. P., Fedrizzi, L., Gialanella, S., and Bonora, P. L., Mater. Sci. Eng. A116, 53 (1989).CrossRefGoogle Scholar
2.Tait, W. S., Huber, C. O., Begnochem, B. C., Siettman, J. R., and Aita, C. R., J. Vac. Sci. Technol. A 6, 924 (1988).CrossRefGoogle Scholar
3.Venkatraman, S., Nair, M. R., Kothari, D. C., Lal, K. B., and Raman, R., Nucl. Instrum. Methods B19–20, 241 (1987).CrossRefGoogle Scholar
4.Conrad, J. R., Radtke, J. L., Dodd, R. A., Worzala, F. J., and Tran, N. C., J. Appl. Phys. 62, 11 (1987).Google Scholar
5.Zhang, L., Booske, J. H., and Shohet, J. L., Mater. Lett. 22, 29 (1995).CrossRefGoogle Scholar
6.Hollingsworth, E. H. and Hunsicker, H. Y., “Aluminum Alloys” (Section 3.5), Corrosion and Corrosion Protection Handbook, edited by Schweitzer, P. A. (Marcel Dekker, New York, 1983).Google Scholar
7.Tang, B. Y., Fetherston, R. P., Shamim, M., Breun, R. A., Chen, A., and Conrad, J. R., J. Appl. Phys. 73, 4176 (1993).CrossRefGoogle Scholar
8.Uhlig, H. H., Corrosion and Corrosion Control (Wiley, New York, 1967).Google Scholar
9. “Annual Book of ASTM standards”, Sec. 3 (Metals Test Methods and Analytical Procedures), Vol. 033.02, 229 (1989).Google Scholar
10.Denanot, M. F., Delafond, J., and Grilhe, H., Radiat. Eff. 88, 145 (1988).CrossRefGoogle Scholar
11.Lucas, S., Bodart, F., Terwagne, G., Sorenson, G., and Jensen, H., Mater. Sci. Eng. B2, 183 (1989).CrossRefGoogle Scholar
12.McCune, R. C., Donlon, W. T., Plummer, H. K., Jr., Toth, L., and Kunz, F. W., Thin Solid Films 168, 263 (1989).CrossRefGoogle Scholar
13.Kanno, I., Nomoto, I., Nishijima, S., Nishiura, T., Okada, T., Kataguri, K., Mari, H., and Iwamoto, K., Nucl. Instrum. Methods Phys. Res. B 59–60, 925 (1991).Google Scholar
14.Walter, K., Ph.D. Thesis, University of Wisconsin-Madison (University Microfilms, International Ann Arbor, MI, 1993).Google Scholar
15. The several values recorded as “unresolvable” in Table III were associated with very thin hysteresis loops from which it was difficult to ascertain the indicated parameter value. Such thin hysteresis loops are generally indicative of good resistance to pitting corrosion. This fact is further corroborated by the highly noble values of the other resolvable potential parameters in Table III.Google Scholar
16.Bowen, P., Highfield, J. G., Mocellin, A., and Ring, T. A., J. Am. Ceram. Soc. 73, 724 (1990).CrossRefGoogle Scholar
17.Long, G. and Foster, L. M., J. Am. Ceram. Soc. 42, 53 (1959).CrossRefGoogle Scholar
18.Young, C-D. and Duh, J-G., J. Mater. Sci. 30, 185 (1995).CrossRefGoogle Scholar
19.Han, S. H., Kulcinski, G. L., and Conrad, J. R., Nucl. Instrum. Methods, Phys. Res. B 45, 701 (1990).CrossRefGoogle Scholar
20.Emmert, G. A. and Henry, M. A., J. Appl. Phys. 71, 113 (1992).CrossRefGoogle Scholar