Hostname: page-component-586b7cd67f-2brh9 Total loading time: 0 Render date: 2024-11-23T08:48:36.674Z Has data issue: false hasContentIssue false

Nitrogen function of aluminum-nitride codoped ZnO films deposited using cosputter system

Published online by Cambridge University Press:  31 January 2011

Jheng-Tai Yan
Affiliation:
Institute of Microelectronics, Department of Electrical Engineering, National Cheng Kung University, 701 Tainan, Taiwan, Republic of China
Chia-Hsun Chen
Affiliation:
Department of Electrical Engineering, National Cheng Kung University, 701 Tainan, Taiwan, Republic of China
Ching-Ting Lee*
Affiliation:
Institute of Microelectronics, Department of Electrical Engineering, National Cheng Kung University, 701 Tainan, Taiwan, Republic of China
*
a) Address all correspondence to this author. e-mail: [email protected]
Get access

Abstract

AlN codoped ZnO films were deposited on sapphire substrates at low temperature using a cosputter system under various N2/(N2 + Ar) flow ratios. To investigate the nitrogen function, the ratio of nitrogen ambient was varied during cosputtering. AlN codoped ZnO films with various crystallographic structures and bonding configurations were measured. With an adequate nitrogen atmosphere deposition condition and postannealing temperature at 450 °C, the p-type conductive behaviors of AlN codoped ZnO films were achieved due to the formation of Zn–N bonds. According to the low-temperature photoluminescence spectra, the binding energy (EA) of 0.16 eV for N acceptors can be calculated. Using time-resolved photoluminescence measurement, the carrier lifetime in AlN codoped ZnO films increases due to the reduction of oxygen vacancies caused by the occupation of adequate nitrogen atoms.

Type
Articles
Copyright
Copyright © Materials Research Society 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1Minegishi, K., Koiwai, Y., Kikuchi, Y., Yano, K., Kasuga, M., and Shimizu, A.: Growth of p-type zinc oxide films by chemical vapor deposition. Jpn. J. Appl. Phys. 36, L1453 (1997).CrossRefGoogle Scholar
2Vaithianathan, V., Lee, B.T., and Kim, S.S.: Pulsed-laser-deposited p-type ZnO films with phosphorus doping. J. Appl. Phys. 98, 043519 (2005).CrossRefGoogle Scholar
3Look, D.C., Renlund, G.M., Burgener, R.H. II , and Sizelove, J.R.: As-doped p-type ZnO produced by an evaporation/sputtering process. Appl. Phys. Lett. 85, 5269 (2004).CrossRefGoogle Scholar
4Mandalapu, L.J., Xiu, F.X., Yang, Z., Zhao, D.T., and Liu, J.L.: P-type behavior from Sb-doped ZnO heterojunction photodiodes. Appl. Phys. Lett. 88, 112108 (2006).CrossRefGoogle Scholar
5Liu, D.S., Sheu, C.S., and Lee, C.T.: Aluminum-nitride codoped zinc oxide films prepared using a radio-frequency magnetron cosputtering system. J. Appl. Phys. 102, 033516 (2007).CrossRefGoogle Scholar
6Chen, L.L., Ye, Z.Z., Lu, J.G., and Chu, P.K.: Control and improvement of p-type conductivity in indium and nitrogen codoped ZnO thin film. Appl. Phys. Lett. 89, 252113 (2006).CrossRefGoogle Scholar
7Kumar, M., Kim, T.H., Kim, S.S., and Lee, B.T.: Growth of epitaxial p-type ZnO thin films by codoping of Ga and N. Appl. Phys. Lett. 89, 112103 (2006).CrossRefGoogle Scholar
8Yuan, G.D., Ye, Z.Z., Zhu, L.P., Qian, Q., Zhao, B.H., Fan, R.X., Perkins, C.L., and Zhang, S.B.: Control of conduction type in Aland N-codoped ZnO thin films. Appl. Phys. Lett. 86, 202106 (2005).CrossRefGoogle Scholar
9Konishi, R., Noda, K., and Sasakura, H.: Heat treatment effect of ZnO:Al thin films prepared by facing-target-type sputtering method. Jpn. J. Appl. Phys. 30, 567 (1991).CrossRefGoogle Scholar
10Yamamoto, T. and Yoshida, H.K.: Solution using a codoping method to unipolarity for the fabrication of p-type ZnO. Jpn. J. Appl. Phys., Part 2 38, L166 (1999).CrossRefGoogle Scholar
11Perkins, C.L., Lee, S.H., Li, X., Asher, S.E., and Coutts, T.J.: Identification of nitrogen chemical states in N-doped ZnO via x-ray photoelectron spectroscopy. J. Appl. Phys. 97, 034907 (2005).CrossRefGoogle Scholar
12Park, C.H., Zhang, S.B., and Wei, S.H.: Origin of p-type doping difficulty in ZnO: The impurity perspective. Phys. Rev. B 66, 073202 (2002).CrossRefGoogle Scholar
13Yao, B., Shen, D.Z., Zhang, Z.Z., Wang, X.H., Wei, Z.P., Li, B.H., Lv, Y.M., Fan, X.W., Guan, L.X., Xing, G.Z., Cong, C.X., and Xie, Y.P.: Effects of nitrogen doping and illumination on lattice constants and conductivity behavior of zinc oxide grown by magnetron sputtering. J. Appl. Phys. 99, 123510 (2006).CrossRefGoogle Scholar
14Lee, E.C., Kim, Y.S., Jin, Y.G., and Chang, K.J.: Compensationmechanism for N acceptors in ZnO. Phys. Rev. B 64, 085120 (2001).CrossRefGoogle Scholar
15Zhang, Y., Chen, D.J., and Lee, C.T.: Free exciton emission and dephasing in individual ZnO nanowires. Appl. Phys. Lett. 91, 161911 (2007).CrossRefGoogle Scholar
16Georgobiani, A.N., Gruzintsev, A.N., Volkov, V.T., Vorobiev, M.O., Demin, V.I., and Dravin, V.A.: P-type ZnO:N obtained by ion implantation of nitrogen with post-implantation annealing in oxygen radicals. Nucl. Instrum. Methods Phys. Res., Sect. A 514, 117 (2003).CrossRefGoogle Scholar
17Ryu, Y.R., Lee, T.S., and White, H.W.: Properties of arsenic-doped p-type ZnO grown by hybrid beam deposition. Appl. Phys. Lett. 83, 87 (2003).CrossRefGoogle Scholar
18Xiu, F.X., Yang, Z., Mandalapu, L.J., and Liu, J.L.: P-type ZnO films with solid-source phosphorus doping by molecular-beam epitaxy. Appl. Phys. Lett. 88, 052106 (2006).CrossRefGoogle Scholar
19Lu, J.G., Zhu, L.P., Ye, Z.Z., Zeng, Y.J., Zhuge, F., Zhao, B.H., and Ma, D.W.: Improved N–Al codoped p-type ZnO thin films by introduction of a homo-buffer layer. J. Cryst. Growth 274, 425 (2005).CrossRefGoogle Scholar
20Wang, Y.G., Lau, S.P., Zhang, X.H., Lee, H.W., Hng, H.H., and Tay, B.K.: Observations of nitrogen-related photoluminescence bands from nitrogen-doped ZnO films. J. Cryst. Growth 252, 265 (2003).CrossRefGoogle Scholar
21Wang, Y.G., Lau, S.P., Lee, H.W., Yu, S.F., and Tay, B.K.: Photoluminescence study of ZnO films prepared by thermal oxidation of Zn metallic films in air. J. Appl. Phys. 94, 354 (2003).CrossRefGoogle Scholar
22Studenikin, S.A., Golego, N., and Cocivera, M.: Fabrication of green and orange photoluminescent, undoped ZnO films using spray pyrolysis. J. Appl. Phys. 84, 2287 (1998).CrossRefGoogle Scholar
23Pan, X.H., Ye, Z.Z., Huang, J.Y., Zeng, Y.J., He, H.P., Gu, X.Q., Zhu, L.P., and Zhao, B.H.: P-type behavior in Li-doped Zn0.9Mg0.1O thin films. J. Cryst. Growth 310, 1029 (2008).CrossRefGoogle Scholar
24Xiu, F.X., Yang, Z., Mandalapu, L.J., Zhao, D.T., and Liu, J.L.: Photoluminescence study of Sb-doped p-type ZnO films by molecular-beam epitaxy. Appl. Phys. Lett. 87, 252102 (2005).CrossRefGoogle Scholar
25Chen, P.S., Lee, T.H., Lai, L.W., and Lee, C.T.: Schottky mechanism for Ni/Au contact with chlorine-treated n-type GaN layer. J. Appl. Phys. 101, 024507 (2007).CrossRefGoogle Scholar
26Lai, L.W. and Lee, C.T.: Investigation of optical and electrical properties of ZnO thin films. Mater. Chem. Phys. 110, 393 (2008).CrossRefGoogle Scholar
27Koida, T., Chichibu, S.F., Uedono, A., Tsukazaki, A., Kawasaki, M., Sota, T., Segawa, Y., and Koinuma, H.: Correlation between the photoluminescence lifetime and defect density in bulk and epitaxial ZnO. Appl. Phys. Lett. 82, 532 (2003).CrossRefGoogle Scholar
28Lu, J.G., Ye, Z.Z., Zeng, Y.J., Zhu, L.P., L.Wang, Yuan, J., Zhao, B.H., and Liang, Q.L.: Structural, optical, and electrical properties of (Zn,Al)O films over a wide range of compositions. J. Appl. Phys. 100, 073714 (2006).CrossRefGoogle Scholar
29Burstein, E.: Anomalous optical absorption limit in InSb. Phys. Rev. 93, 632 (1954).CrossRefGoogle Scholar
30Yuan, G., Ye, Z., Zhu, L., Zeng, Y., Huang, J., Qian, Q., and Lu, J.: P-type conduction in Al–N co-doped ZnO films. Mater. Lett. 58, 3741 (2004).CrossRefGoogle Scholar