Hostname: page-component-78c5997874-g7gxr Total loading time: 0 Render date: 2024-11-19T12:28:22.259Z Has data issue: false hasContentIssue false

Nitride-bonded silicon nitride from slip-cast Si + Si3N4 compacts

Published online by Cambridge University Press:  31 January 2011

R. Ramachandra Rao
Affiliation:
Materials Science Division, National Aerospace Laboratories, Bangalore, 560 017 India
T. S. Kannan
Affiliation:
Materials Science Division, National Aerospace Laboratories, Bangalore, 560 017 India
Get access

Abstract

The dispersability of Si and Si3N4 powders in aqueous media was monitored by particle-size distribution, sedimentation behavior, viscosity/rheological studies, and electrokinetic behavior [zeta potential (ZP) analysis] as a function of pH of their slips. The pH values of 4 and 8 for Si and 10 for Si3N4 resulted in optimum dispersion, characterized by minimum in sedimentation height, minimum in viscosity, and maximum in ZP. The optimum slips of Si + Si3N4 mixtures conditioned in the pH range 8 to 10 were slip cast to obtain green compacts having a density in the range of 59% to 66% theoretical value. When nitrided, these compacts yielded nitride-bonded Si3N4 products having a density of 2.06 to 2.28 g cm−3, Si3N4 bonding phase of 20–60%, and 3-point flexural strength values in the range of 50 to 150 MPa. The microstructure consisted of very fine particles as well as fibrous or whiskerlike α–Si3N4 binding phase enveloping the matrix Si3N4, in total consisting of 90% α–Si3N4 and the rest being β–Si3N4 phase.

Type
Articles
Copyright
Copyright © Materials Research Society 2002

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Katz, R.N., in Structural Ceramics, Treatise on Materials Science and Technology, edited by Wachtman, J.B. Jr., (Academic Press, New York, 1989), Vol. 29, p. 1.Google Scholar
2.Komeya, K. and Matsui, M., in Materials Sciene and Technology, A Comprehensive Treatment, edited by Cahn, R.W., Haasen, P., and Kramer, E.J., Vol. 11, Structure and Properties of Ceramics, Volume Ed., Swain, M.V. (VCH Publishers, Weinheim, Germany, 1994), p. 517.Google Scholar
3.Riley, F.L., J. Am. Ceram. Soc. 83, 245 (2000).CrossRefGoogle Scholar
4.Woetting, G., Leimer, G., Lindner, H.A., and Gugel, E., Indus. Cer. 15, 191 (1995).Google Scholar
5.Ziegler, G., Heinrich, J., and Woetting, G., J. Mater. Sci. 22, 3041 (1987).CrossRefGoogle Scholar
6.Washburn, M.E. and Coblenz, W.S., Am. Ceram. Soc. Bull. 67, 356, 360 (1988)Google Scholar
7.Williams, R.M. and Ezis, A., Am. Ceram. Soc. Bull. 62, 607, 619 (1983)Google Scholar
8.Pompe, R. and Hermansson, L., Sprechsaal. 115, 1098 (1982).Google Scholar
9.Falk, L.K.L., Dunlop, G.L., and Pompe, R., Mater. Sci. Eng. 71, 123 (1985).CrossRefGoogle Scholar
10.Falk, L.K.L., Pompe, R., and Dunlop, G.L., J. Mater. Sci. 20, 3545 (1985).CrossRefGoogle Scholar
11.Atkinson, A., Leatt, P.J., and Moulson, A.J., J. Mater. Sci. 7, 482 (1972).CrossRefGoogle Scholar
12.Gregory, O.J. and Richman, M.H., J. Mater. Sci. Lett. 3, 112 (1984).CrossRefGoogle Scholar
13.Williams, R.M., Ezis, A., and Caverly, J.C., J. Am. Ceram. Soc. 67, C64 (1984).Google Scholar
14.Huang, J-L., Chen, S-W., Lu, H-H., and Chan, W-H., Ceramics International. 22, 27 (1996).CrossRefGoogle Scholar
15.Bhat, R. and Roy, S.K., in Advanced Ceramics, edited by Ramakrishnan, P. (Oxford and IBH Publishing Co. Pvt. Ltd., New Delhi, 1992), p. 51.Google Scholar
16.Rao, R. Ramachandra, Roopa, H.N., and Kannan, T.S., J. Eur. Ceram. Soc. 19, 2763 (1999).Google Scholar
17.Rao, R. Ramachandra, Roopa, H.N., and Kannan, T.S., Bull. Mater. Sci. 24, 57 (2001).CrossRefGoogle Scholar
18.Stephen, R.G. and Riley, F.L., J. Eur. Ceram. Soc. 5, 219 (1989).CrossRefGoogle Scholar
19.Bergstrom, L. and Pugh, R.J., J. Am. Ceram. Soc. 72, 103 (1989).CrossRefGoogle Scholar
20.Li, Y.L., Liang, Y., Zheng, F., Xiao, K., Hu, Z.Q., and Shun, T., J. Mater. Sci. Letts. 14, 713 (1995).Google Scholar
21.Sacks, M.D. and Scheiffele, G.W., Ceram. Eng. Sci. Proc. 6, 1109 (1985).CrossRefGoogle Scholar
22.Rao, R. Ramachandra, Roopa, H.N., and Kannan, T.S., Ceramics International. 25, 223 (1999).Google Scholar
23.Rao, R. Ramachandra, Roopa, H.N., and Kannan, T.S., J. Eur. Ceram. Soc. 19, 2145 (1999).CrossRefGoogle Scholar
24.Rao, R. Ramachandra, Roopa, H.N., and Kannan, T.S., J. Mater. Sci. Letters 15, 1956 (1996)Google Scholar
25.Rao, R. Ramachandra, Ph.D. Thesis, Mangalore University, Karnataka, India, (2001).Google Scholar