Hostname: page-component-586b7cd67f-rcrh6 Total loading time: 0 Render date: 2024-11-20T06:25:38.511Z Has data issue: false hasContentIssue false

Niobium and zirconium telluride thin films prepared by sputtering

Published online by Cambridge University Press:  31 January 2011

Daniel Pailharey
Affiliation:
CNRS UMR 6631, Faculté des Sciences de Luminy, Université de la Méditerranée, F-13288 Marseille, Cedex 9, France
Yves Mathey
Affiliation:
CNRS UMR 6631, Faculté des Sciences de Luminy, Université de la Méditerranée, F-13288 Marseille, Cedex 9, France
Mohamad Kassem
Affiliation:
CNRS UMR 6631, Faculté des Sciences de Luminy, Université de la Méditerranée, F-13288 Marseille, Cedex 9, France and Department of Chemistry, Atomic Energy Commission of Syria, B.P. 6091, Damas, Syria
Get access

Abstract

A versatile procedure of sputter deposition, well-adapted for getting a large range of Te/M ratios (with M = Zr or Nb), has led to the synthesis of several highly anisotropic zirconium and niobium polytellurides in thin film form. Upon tuning the two key parameters of the process, i.e., the Te percentage in the target and the substrate temperature during the deposition, preparation of systems ranging from ZrTe0.72 to ZrTe6.7, on the one hand, and from NbTe1.28 to NbTe7.84, on the other, has been achieved. Besides their amorphous or crystalline (with or without preferential orientations) behavior and their relationship to known structural types, the most striking feature of these films is their large departure from the stoichiometry of the bulk MTex reference compounds. This peculiarity, together with the possible changes of composition under annealing, are described and interpreted in terms of variable amounts of Te and M atoms trapped or intercalated within the parent structures.

Type
Articles
Copyright
Copyright © Materials Research Society 1999

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. (a)Crystal Chemistry and Properties of Materials with Quasi One-dimensional Structures, edited by Rouxel, J. (D. Reidel, Dordrecht, 1986).CrossRefGoogle Scholar
(b)Physics and Chemistry of Materials with Layered Structures (D. Reidel, Dordrecht, 1976–1979), Vols. I–VI.Google Scholar
2. (a)Saiki, K., Ueno, K., Shimada, T., and Koma, A., J. Cryst. Growth 95, 603 (1989).CrossRefGoogle Scholar
(b)Omuchi, F. S., Parkinson, B.A., Ueno, K., and Koma, A., J. Appl. Phys. 68, 2168 (1990).Google Scholar
3. (a)Linck, J. R. and Fleischauer, P.P., J. Mater. Res. 2, 827 (1987).Google Scholar
(b)Bichsel, R., Buffat, P., and Levy, F., J. Phys. D: Appl. Phys. 19, 1575 (1986).CrossRefGoogle Scholar
4.Kikkawa, S., Miyazaki, M., and Koizumi, M., J. Mater. Res. 5, 2894 (1990).CrossRefGoogle Scholar
5. (a)Caune, S., Mathey, Y., and Pailharey, D., Thin Solid Films 174, 289 (1989).CrossRefGoogle Scholar
(b)Bernede, J. C. and Pouzet, J., Vide, Le, les Couches Minces 270, 1 (1994).Google Scholar
6.Langlade, C., Fayeulle, S., Mathey, Y., Pailharey, D., and Kassem, M., Surf. Coat. Technol. 62, 417 (1993).CrossRefGoogle Scholar
7.Kassem, M., Mathey, Y., Pailharey, D., Richard, G., Fayeulle, S., and Langlade, C., Vide, Le, les Couches Minces 266, 312 (1993).Google Scholar
8.Selte, K. and Kjekshus, A., Acta Chem. Scand. 17, 2560 (1963).CrossRefGoogle Scholar
9.Selte, K. and Kjekshus, A., Acta Crystallogr. 17, 1568 (1964).CrossRefGoogle Scholar
10.Brown, B. E., Acta Crystallogr. 20, 264 (1966).CrossRefGoogle Scholar
11.Selte, K. and Kjekshus, A., Acta Chem. Scand. 18, 690 (1964).CrossRefGoogle Scholar
12.Snodgrass, J. Y., Coe, J.V., McHugh, K. M., Freidhoff, C. B., and Bowen, K. H., J. Phys. Chem. 93, 1249 (1989).CrossRefGoogle Scholar
13.Chaigneau, M. and Santarromana, M., C. R. Acad. Sci. Paris 266, 325 (1968).Google Scholar
14.Li, J., Badding, M. E., and DiSalvo, F. J., J. Alloys Comp. 84, 257 (1992).CrossRefGoogle Scholar
15. (a)Gleizes, A. and Jeannin, Y., Solid State Commun. 5, 42 (1972).CrossRefGoogle Scholar
(b)Lieth, R. M. A. and Terhell, J. C. M. J., in Physics and Chemistry of Materials with Layered Structures, edited by Lieth, R. M.A (D. Reidel, Dordrecht, 1997), Vol. 1, p. 169.Google Scholar
16. (a)Fjellvag, H., Furuseth, S., Kjekshus, A., and Rakke, T., Solid State Commun. 63, 293 (1987).CrossRefGoogle Scholar
(b)Saibene, S., Butz, T., and Lerf, A., Ber. Bunsenges. Phys. Chem. 93, 1359 (1989).CrossRefGoogle Scholar
17. (a)Brunie, S. and Chevretron, M., Bull. Soc. Fr. Mineral. Cristallogr. 91, 422 (1968).Google Scholar
(b)Krachler, R. and Ipser, H., J. Alloys Comp. 178, 29 (1992).CrossRefGoogle Scholar
(c)de Boer, R. and Cordfunke, E. H. P., J. Alloys Comp. 259, 115 (1997).CrossRefGoogle Scholar
18. An alternative version for a niobium telluride phase in this range of stoichiometry could derive from the filling of the interchain spaces of a Nb5Te 4 1D structure with a very large amount (close to 4) per formula unit of Te atoms. Such a filled structure has already been described in the peculiar situation of a Nb5Si4Cu4 by E. Ganglberger [Monatsh. Chem. 99, 549 (1968)]. Nevertheless, it is highly improbable that such a Nb5Te4, Te4-filled network was insensitive to any annealing.Google Scholar
19.Richard, G. and Mathey, Y., unpublished results.Google Scholar
20.Grangeon, F., Sassoli, H., Mathey, Y., Autric, M., Pailharey, D., and Marine, W., Appl. Surf. Sci. 86, 160 (1995).CrossRefGoogle Scholar
21.Mathey, Y., Pailharey, D., Gerri, M., Bonnot, A. M., and Sorbier, J. P., in Physical Concepts of Materials for Novel Optoelectronic Device Applications, SPIE 1361, 909 (1990).Google Scholar
22.Pailharey, D., Mathey, Y., Lavela, P., and Tirado, J. L., Electrochim. Acta 43, 495 (1997).CrossRefGoogle Scholar