Hostname: page-component-745bb68f8f-grxwn Total loading time: 0 Render date: 2025-01-10T05:55:47.506Z Has data issue: false hasContentIssue false

Nickel–alumina nanocomposite powders prepared by novel in situchemical reduction

Published online by Cambridge University Press:  31 January 2011

Zheng-Ren Huang
Affiliation:
Shanghai Institute of Ceramics, Chinese Academy of Sciences, 1295 Ding-Xi Road, Shanghai 200050, People's Republic of China
Dongliang Jiang
Affiliation:
Shanghai Institute of Ceramics, Chinese Academy of Sciences, 1295 Ding-Xi Road, Shanghai 200050, People's Republic of China
Daniel Michel
Affiliation:
Centre d'Etudes de Chimie Métallurgique, CNRS UPR 2801, 15 rue Georges Urbain, 94407 Vitry, France
Léo Mazerolles
Affiliation:
Centre d'Etudes de Chimie Métallurgique, CNRS UPR 2801, 15 rue Georges Urbain, 94407 Vitry, France
Alain Ferrand
Affiliation:
Centre d'Etudes de Chimie Métallurgique, CNRS UPR 2801, 15 rue Georges Urbain, 94407 Vitry, France
Thomas di Costanzo
Affiliation:
Centre d'Etudes de Chimie Métallurgique, CNRS UPR 2801, 15 rue Georges Urbain, 94407 Vitry, France
Jean-Louis Vignes
Affiliation:
Centre d'Etudes de Chimie Métallurgique, CNRS UPR 2801, 15 rue Georges Urbain, 94407 Vitry, France
Get access

Abstract

Nanocomposite powders of Ni–Al2O3 (5 and 10 vol% Ni) were prepared from porous alumina preforms with high specific area (100 m2 g?1) impregnated with nickel nitrate. Samples were obtained by reduction under a controlled oxygen partial pressure either directly or through an intermediate step, giving nickel aluminum spinel. In both cases, homogeneous dispersions of nickel particles in the alumina matrix were achieved. The Ni particle size ranged from 10 to 100 nm, depending on the preparation conditions and temperature.

Type
Articles
Copyright
Copyright © Materials Research Society 2002

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Tuan, W.H. and Brook, R.J., J. Eur. Ceram. Soc. 10, 95 (1992).CrossRefGoogle Scholar
2.Devaux, X., Laurent, Ch., and Rousset, A., Nanostruct. Mater. 2, 339 (1993).CrossRefGoogle Scholar
3.Rodeghiero, E.D., Tse, O.K., Chisaki, J., and Gianelis, E.P., Mater. Sci. Eng. A A195, 151 (1995).CrossRefGoogle Scholar
4.Quenard, O., Grave, E. De, Laurent, Ch., and Rousset, A., J. Mater. Chem. 7, 1197 (1997).CrossRefGoogle Scholar
5.Laurent, Ch., Peigney, A., and Rousset, A., J. Mater. Chem. 8, 1263 (1998).CrossRefGoogle Scholar
6.Sekino, T., Nakajima, T., Ueda, S., and Niihara, K., J. Am. Ceram. Soc. 80, 1139 (1997).CrossRefGoogle Scholar
7.Oh, S-T., Sando, M., and Niihara, K., Scripta Mater. 39, 1413 (1998).CrossRefGoogle Scholar
8.Garcia, D.E., Schicker, S., Bruhn, J., Janssen, R., and Claussen, N., J. Am. Ceram. Soc. 81, 429 (1998).CrossRefGoogle Scholar
9.Bruck, H.A. and Rabin, B.H., J. Am. Ceram. Soc. 82, 2927 (1999).CrossRefGoogle Scholar
10.Schicker, S., Garcia, D.E., Bruhn, J., Janssen, R., and Claussen, N., J. Am. Ceram. Soc. 80, 2294 (1997).CrossRefGoogle Scholar
11.Winter, A.N., Corff, B.A., Reimanis, I., and Rabin, B.H., J. Am. Ceram. Soc. 83, 2147 (2000).CrossRefGoogle Scholar
12.Petit, F., Descamps, P., Poorteman, M., Cambier, F., and Leriche, A., Key Eng. Mater. 981 (Trans. Tech., Vekiton-Zuerich, Switzerland, 2002), pp. 206, 213.Google Scholar