Hostname: page-component-745bb68f8f-5r2nc Total loading time: 0 Render date: 2025-01-25T19:20:35.907Z Has data issue: false hasContentIssue false

Ni- and Cu-free Zr–Al–Co–Ag bulk metallic glasses with superior glass-forming ability

Published online by Cambridge University Press:  23 February 2011

Nengbin Hua
Affiliation:
Key Laboratory of Aerospace Materials and Performance (Ministry of Education), School of Materials Science and Engineering, Beihang University, 100191 Beijing, China
Shujie Pang
Affiliation:
Key Laboratory of Aerospace Materials and Performance (Ministry of Education), School of Materials Science and Engineering, Beihang University, 100191 Beijing, China
Yan Li
Affiliation:
Key Laboratory of Aerospace Materials and Performance (Ministry of Education), School of Materials Science and Engineering, Beihang University, 100191 Beijing, China
Jianfeng Wang
Affiliation:
Key Laboratory of Aerospace Materials and Performance (Ministry of Education), School of Materials Science and Engineering, Beihang University, 100191 Beijing, China
Ran Li
Affiliation:
Key Laboratory of Aerospace Materials and Performance (Ministry of Education), School of Materials Science and Engineering, Beihang University, 100191 Beijing, China
Konstantinos Georgarakis
Affiliation:
WPI-AIMR, Tohoku University, Aoba-Ku, Sendai 980-8577, Japan; and Euronano-SIMaP-CNRS, INP Grenoble, St-Martin-d’Hères 38402, France
Alain Reza Yavari
Affiliation:
Euronano-SIMaP-CNRS, INP Grenoble, St-Martin-d’Hères 38402, France; WPI-AIMR, Tohoku University, Aoba-Ku, Sendai 980-8577, Japan; and European Synchrotron Radiation Facility (ESRF), Grenoble 38042, France
Gavin Vaughan
Affiliation:
European Synchrotron Radiation Facility (ESRF), Grenoble 38042, France
Tao Zhang*
Affiliation:
Key Laboratory of Aerospace Materials and Performance (Ministry of Education), School of Materials Science and Engineering, Beihang University, 100191 Beijing, China
*
a)Address all correspondence to this author. e-mail: [email protected]
Get access

Abstract

Ni- and Cu-free Zr–Al–Co–Ag bulk metallic glasses (BMGs) with diameters up to 20 mm were synthesized by copper mold casting. The effects of Ag alloying on the superior glass-forming ability (GFA) of Zr–Al–Co–Ag alloys were studied based on the localized atomic structure and crystallization behavior. High-energy synchrotron radiation x-ray diffraction result reveals that Ag addition in Zr–Al–Co system results in a more homogeneous local atomic structure, which could be an origin for the improved GFA of the Zr–Al–Co–Ag alloy. Crystallization products of the Zr–Al–Co–Ag glassy alloy are more complex than those of the Zr–Al–Co glassy alloy. The Zr–Al–Co–Ag BMGs free from highly toxic elements Ni and Cu exhibited a combination of superior GFA, high compressive fracture strength over 2000 MPa, low Young’s modulus of 93 to 94 GPa, and good corrosion resistance in phosphate-buffered solution (PBS), inspiring their potential biomedical applications.

Type
Articles
Copyright
Copyright © Materials Research Society 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Johnson, W.L.: Bulk glass-forming metallic alloys: Science and technology. MRS Bull. 24(10), 42 (1999).CrossRefGoogle Scholar
2.Wang, W.H., Dong, C., and Shek, C.H.: Bulk metallic glasses. Mater. Sci. Eng. Rep. 44, 45 (2004).CrossRefGoogle Scholar
3.Greer, A.L. and Ma, E.: Bulk metallic glasses: At the cutting edge of metals research. MRS Bull. 32, 611 (2007).CrossRefGoogle Scholar
4.Ma, M.Z., Liu, R.P., Xiao, Y., Lou, D.C., Liu, L., Wang, Q., and Wang, W.K.: Wear resistance of Zr-based bulk metallic glass applied in bearing rollers. Mater. Sci. Eng. A 386, 326 (2004).CrossRefGoogle Scholar
5.Pang, S.J., Zhang, T., Asami, K., and Inoue, A.: Formation, corrosion behavior, and mechanical properties of bulk glassy Zr–Al–Co–Nb alloys. J. Mater. Res. 18, 1652 (2003).CrossRefGoogle Scholar
6.Morrison, M.L., Buchanan, R.A., Leon, R.V., Liu, C.T., Green, B.A., Liaw, P.K., and Horton, J.A.: The electrochemical evaluation of a Zr-based bulk metallic glass in a phosphate-buffered saline electrolyte. J. Biomed. Mater. Res. A 74A, 430 (2005).CrossRefGoogle Scholar
7.Qiu, C.L., Chen, Q., Liu, L., Chan, K.C., Zhou, J.X., Chen, P.P., and Zhang, S.M.: A novel Ni-free Zr-based bulk metallic glass with enhanced plasticity and good biocompatibility. Scr. Mater. 55, 605 (2006).CrossRefGoogle Scholar
8.Peker, A. and Johnson, W.L.: A highly processable metallic glass: Zr41.2Ti13.8Cu12.5Ni10.0Be22.5. Appl. Phys. Lett. 63, 2342 (1993).CrossRefGoogle Scholar
9.Inoue, A., Zhang, T., Nishiyama, N., Ohba, K., and Masumoto, T.: Preparation of 16 mm diameter rod of amorphous Zr65Al7.5Ni10Cu17.5 alloy of outstanding interest. Mater. Trans. JIM 34, 1234 (1993).CrossRefGoogle Scholar
10.Inoue, A. and Zhang, T.: Fabrication of bulk glassy Zr55Al10Ni5Cu30 alloy of 30 mm in diameter by a suction casting method. Mater. Trans., JIM 37, 185 (1996).CrossRefGoogle Scholar
11.Yamamoto, A., Honma, R., and Sumita, M.: Cytotoxicity evaluation of 43 metal salts using murine fibroblasts and osteoblastic cells. J. Biomed. Mater. Res. 39, 331 (1998).3.0.CO;2-E>CrossRefGoogle ScholarPubMed
12.Wada, T., Zhang, T., and Inoue, A.: Formation, thermal stability and mechanical properties in Zr–Al–Co bulk glassy alloys. Mater. Trans., JIM 43, 2843 (2002).CrossRefGoogle Scholar
13.Wada, T., Zhang, T., and Inoue, A.: Formation and high mechanical strength of bulk glassy alloys in Zr–Al–Co–Cu system. Mater. Trans., JIM 44, 1839 (2003).CrossRefGoogle Scholar
14.Jin, K.F. and Löffler, J.F.: Bulk metallic glass formation in Zr–Cu–Fe–Al alloys. Appl. Phys. Lett. 86, 241909 (2005).CrossRefGoogle Scholar
15.Jiang, Q.K., Wang, X.D., Nie, X.P., Zhang, G.D., Ma, H., Fecht, H.J., Bendnarcik, J., Franz, H., Liu, Y.G., Cao, Q.P., and Jiang, J.Z.: Zr–(Cu, Ag)–Al bulk metallic glasses. Acta Mater. 56, 1785 (2008).CrossRefGoogle Scholar
16.Liu, L., Qiu, C.L., Huang, C.Y., Yua, Y., Huang, H., and Zhang, S.M.: Biocompatibility of Ni-free Zr-based bulk metallic glasses. Intermetallics 17, 235 (2009).CrossRefGoogle Scholar
17.Wada, T., Qin, F.X., Wang, X.M., Yoshimura, M., Inoue, A., Sugiyama, N., Ito, R., and Matsushita, N.: Formation and bioactivation of Zr–Al–Co bulk metallic glasses. J. Mater. Res. 24, 2941 (2009).CrossRefGoogle Scholar
18.Zhang, W., Jia, F., Zhang, Q.S., and Inoue, A.: Effects of additional Ag on the thermal stability and glass-forming ability of Cu–Zr binary glassy alloys. Mater. Sci. Eng. A 459, 330 (2007).CrossRefGoogle Scholar
19.Liu, Z., Chan, K.C., and Liu, L.: Enhanced glass forming ability and plasticity of a Ni-free Zr-based bulk metallic glass. J. Alloys Compd. 487, 152 (2009).CrossRefGoogle Scholar
20.Zhang, C., Li, N., Pan, J., Guo, S.F., Zhang, M., and Liu, L.: Enhancement of glass-forming ability and bio-corrosion resistance of Zr–Co–Al bulk metallic glasses by the addition of Ag. J. Alloys Compd. 504, S163 (2010).CrossRefGoogle Scholar
21.Wan, Y.Z., Raman, S., He, F., and Huang, Y.: Surface modification of medical metals by ion implantation of silver and copper. Vacuum 81, 1114 (2007).CrossRefGoogle Scholar
22.Wataha, J.C.: Biocompatibility of dental casting alloys: A review. J. Prosthet. Dent. 83, 223 (2000).CrossRefGoogle ScholarPubMed
23.Chen, W., Liu, Y., Courtney, H.S., Bettenga, M., Agrawal, C.M., Bumgardner, J.D., and Ong, J.L.: In vitro anti-bacterial and biological properties of magnetron co-sputtered silver-containing hydroxyapatite coating. Biomaterials 27, 5512 (2006).CrossRefGoogle ScholarPubMed
24.Balamurugan, A., Balossier, G., Laurent-Maquin, D., Pina, S., Rebelo, A.H.S., Faure, J., and Ferreira, J.M.F.: An in vitro biological and anti-bacterial study on a sol-gel derived silver-incorporated bioglass system. Dent. Mater. 24, 1343 (2008).CrossRefGoogle Scholar
25.Alt, V., Bechert, T., Steinrucke, P., Wagener, M., Seidel, P., Dingeldein, E., Domann, E., and Schnettler, R.: An in vitro assessment of the antibacterial properties and cytotoxicity of nanoparticulate silver bone cement. Biomaterials 25, 4383 (2004).CrossRefGoogle Scholar
26.Louzguine-Luzgin, D.V., Georgarakis, K., Yavari, A.R., Vaughan, G., Xie, G.Q., and Inoue, A.: Effect of Ag addition on local structure of Cu–Zr glassy alloy. J. Mater. Res. 24, 274 (2009).CrossRefGoogle Scholar
27.Inoue, A.: Stabilization of metallic supercooled liquid and bulk amorphous alloys. Acta Mater. 48, 279 (2000).CrossRefGoogle Scholar
28.Turnbull, D.: Under what conditions can a glass be formed? Contemp. Phys. 10, 473 (1969).CrossRefGoogle Scholar
29.Lu, Z.P. and Liu, C.T.: A new glass-forming ability criterion for bulk metallic glasses. Acta Mater. 50, 3501 (2002).CrossRefGoogle Scholar
30.Yavari, A.R.: Materials science: A new order in metallic glasses. Nature 439, 405 (2006).CrossRefGoogle ScholarPubMed
31.Antonowicz, J., Louzguine-Luzgin, D.V., Yavari, A.R., Georgarakis, K., Stoica, M., Vaughan, G., Matsubara, E., and Inoue, A.: Atomic structure of Zr–Cu–Al and Zr–Ni–Al amorphous alloys. J. Alloys Compd. 471, 70 (2009).CrossRefGoogle Scholar
32.Hirata, A., Morino, T., Hirotsu, Y., Itoh, K., and Fukunaga, T.: Local atomic structure analysis of Zr–Ni and Zr–Cu metallic glasses using electron diffraction. Mater. Trans., JIM 48, 1299 (2007).CrossRefGoogle Scholar
33.Georgarakis, K., Yavari, A.R., Aljerf, M., Louzguine-Luzgin, D.V., Stoica, M., Vaughan, G., and Inoue, A.: On the atomic structure of Zr–Ni and Zr–Ni–Al metallic glasses. J. Appl. Phys. 108, 023514 (2010).CrossRefGoogle Scholar
34.Fang, H.Z., Hui, X., Chen, G.L., and Liu, Z.K.: Al-centered icosahedral ordering in Cu46Zr46Al8 bulk metallic glass. Appl. Phys. Lett. 94, 091904 (2009).CrossRefGoogle Scholar
35.Cheng, Y.Q., Ma, E., and Sheng, H.W.: Alloying strongly influences the structure, dynamics, and glass forming ability of metallic supercooled liquids. Appl. Phys. Lett. 93, 111913 (2008).CrossRefGoogle Scholar
36.Cheng, Y.Q., Ma, E., and Sheng, H.W.: Atomic level structure in multicomponent bulk metallic glass. Phys. Rev. Lett. 102, 245501 (2009).CrossRefGoogle ScholarPubMed
37.Wang, X.D., Jiang, Q.K., Cao, Q.P., Bednarcik, J., Franz, H., and Jiang, J.Z.: Atomic structure and glass forming ability of Cu46Zr46Al8 bulk metallic glass. J. Appl. Phys. 104, 09993519 (2008).CrossRefGoogle Scholar
38.Takeuchi, A. and Inoue, A.: Classification of bulk metallic glasses by atomic size difference, heat of mixing and period of constituent elements and its application to characterization of the main alloying element. Mater. Trans., JIM 46, 2817 (2005).CrossRefGoogle Scholar
39.Fujita, T., Konno, K., Zhang, W., Kumar, V., Matsuura, M., Inoue, A., Sakurai, T., and Chen, M.W.: Atomic-scale heterogeneity of a multicomponent bulk metallic glass with excellent glass forming ability. Phys. Rev. Lett. 103, 075502 (2009).CrossRefGoogle ScholarPubMed
40.Sato, S., Sanada, T., Saida, J., Imafuku, M., Matsubara, E., and Inoue, A.: Effect of Al on local structures of Zr–Ni and Zr–Cu metallic glasses. Mater. Trans., JIM 46, 2893 (2005).CrossRefGoogle Scholar