Hostname: page-component-745bb68f8f-cphqk Total loading time: 0 Render date: 2025-01-24T14:38:04.507Z Has data issue: false hasContentIssue false

A new surface pretreatment approach for enhancing diamond nucleation

Published online by Cambridge University Press:  31 January 2011

Qi Hua Fan*
Affiliation:
Department of Physics, University of Aveiro, 3810 Aveiro, Portugal
A. Fernandes
Affiliation:
Department of Physics, University of Aveiro, 3810 Aveiro, Portugal
E. Pereira
Affiliation:
Department of Physics, University of Aveiro, 3810 Aveiro, Portugal
J. Grácio
Affiliation:
Department of Mechanical Engineering, University of Aveiro, 3810 Aveiro, Portugal
*
a)Address all correspondence to this author. e-mail: [email protected]
Get access

Abstract

In this paper we present a new approach of surface pretreatment for enhancing diamond nucleation. The copper substrates were fixed inside a plastic cylinder container with diamond powder diluted in water. This container was coupled to a vibration unit moving up and down at ˜300 cycles/min with a stroke of 15 mm. Finally, samples pretreated for 30 min were deposited with diamond. A high nucleation density comparable to that on substrate abraded with diamond powder was achieved. This method proved to be more effective than our ultrasonic treatment, keeping the advantages of surface preservation. Being simple and straightforward, this “shaking” pretreatment most fits the cases where a thin interlayer has to be used (like diamond coating on steel) and where the samples have a complex shape.

Type
Articles
Copyright
Copyright © Materials Research Society 1999

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Field, J.E. (ed.), Properties of Natural and Synthetic Diamond (Academic Press, San Diego, CA, 1992), p. 667.Google Scholar
2.Angus, J.C. and Hayman, C.C., Science 241, 913 (1988).CrossRefGoogle Scholar
3.Spear, K.E., J. Am. Ceram. Soc. 72, 171 (1989).CrossRefGoogle Scholar
4.Yarbrough, W.A. and Messier, R., Science 247, 688 (1990).CrossRefGoogle Scholar
5.Bull, S.J. and Rickerby, D.S. in Advanced Surface Coatings: A Handbook of Surface Engineering, edited by Rickerby, D.S. and Matthews, A. (Chapman and Hall, New York, 1991), p. 315.CrossRefGoogle Scholar
6.Zhu, W., McCune, R.C., de Vries, J.E., Tamor, M.A., and Simon Ng, K.Y., Diamond Relat. Mater. 4, 220 (1995).CrossRefGoogle Scholar
7.Park, S.S. and Lee, J.Y., J. Appl. Phys. 69, 2618 (1991).CrossRefGoogle Scholar
8.Bienk, E.J. and Eskildsen, S., Diamond Relat. Mater. 2, 432 (1993).CrossRefGoogle Scholar
9.Sun, Z., Zheng, Z., and Xu, N., Diamond Films Technol. 3, 227 (1994).Google Scholar
10.Fritzen, C.L., Livi, R.P., de Souza, J.P., and da Jornada, J.A.H., Diamond Films Technol. 7, 49 (1997).Google Scholar
11.Demuynck, L., Arnault, J.C., Speisser, C., Polini, R., and Le Normand, L., Diamond Relat. Mater. 6, 235 (1997).CrossRefGoogle Scholar
12.Demuynck, L., Arnault, J.C., Polini, R., and Le Normand, F., Surf. Sci. 377–379, 871 (1997).CrossRefGoogle Scholar
13.Shibuya, Y. and Takaya, M., Surf. Coat. Technol. 106, 55 (1998).CrossRefGoogle Scholar
14.Fan, Qi Hua, Grácio, J., and Pereira, E., J. Mater. Sci. 34, 1353 (1999).CrossRefGoogle Scholar
15.Arezzo, F., Zacchetti, N., and Zhu, W., J. Appl. Phys. 75, 5375 (1994).CrossRefGoogle Scholar
16.Anger, E., Gicquel, A., Wang, Z.Z., and Ravet, M.F., Diamond Relat. Mater. 4, 759 (1995).CrossRefGoogle Scholar
17.Chakk, Y., Brener, R., and Hoffman, A., Appl. Phys. Lett. 66, 2819 (1995).CrossRefGoogle Scholar
18.Chi, T. and Ingram, D.C., J. Appl. Phys. 78, 5745 (1995).Google Scholar
19.Schweitz, K.O., Jensen Schou, R.B., and Eskildsen, S.S., Diamond Relat. Mater. 5, 206 (1996).CrossRefGoogle Scholar
20.Endler, I., Leonhardt, A., Scheibe, H.J., and Born, R., Diamond Relat. Mater. 5, 299 (1996).CrossRefGoogle Scholar
21.Oesterschulze, E., Scholz, W., Mihalcea, C., Albert, D., Sobisch, B., and Kulisch, W., Appl. Phys. Lett. 70, 435 (1997).CrossRefGoogle Scholar
22.Schelz, S., Borges, C., Martinu, L., and Moisan, M., Diamond Relat. Mater. 6, 440 (1997).CrossRefGoogle Scholar
23.Hirakuri, K.K., Yoshii, M., Freidbacher, G., and Grasserbauer, M., Diamond Relat. Mater. 6, 1031 (1997).CrossRefGoogle Scholar
24.Fan, Q.H., Fernandes, A., Pereira, E., and Grácio, J., Vacuum 52, 193 (1999).CrossRefGoogle Scholar
25.Wolter, S.D., Glass, J.T., and Stoner, B.R., Thin Solid Films 261, 4 (1995).CrossRefGoogle Scholar
26.Chen, F., Chen, Y., and Wang, E.G., Proc. SPIE-Int. Soc. Opt. Eng. 2892, 225 (1996).Google Scholar
27.Li, X., Hayashi, Y., and Nishino, S., Jpn. J. Appl. Phys. Part 1 36, 5197 (1997).CrossRefGoogle Scholar
28.Wang, W.L., Sanchez, G., Polo, M.C., and Esteve, J., Physica Status Solidi A161, 3 (1997).3.0.CO;2-K>CrossRefGoogle Scholar
29.Yagi, H., Hoshina, K., Hatta, A., Ito, T., Sasaki, T., and Hiraki, A., Jpn. J. Appl. Phys. Part 2, 36, L507 (1997).CrossRefGoogle Scholar
30.Stockel, R., Stammler, M., Janischowsky, K., Ley, L., Albrecht, M., and Strunk, H.P., J. Appl. Phys. 83, 531 (1997).CrossRefGoogle Scholar
31.Wagner, J., Wild, C., and Koidl, P., Appl. Phys. Lett. 59, 779 (1991).CrossRefGoogle Scholar
32.Collins, A.T., International School of Physics, “Enrico Fermi” Summer Course on the Physics of Diamond, Italy, July 23–August 2, 1996.Google Scholar