Hostname: page-component-cd9895bd7-dzt6s Total loading time: 0 Render date: 2024-12-23T12:09:14.416Z Has data issue: false hasContentIssue false

New insights on ion track morphology in pyrochlores by aberration corrected scanning transmission electron microscopy

Published online by Cambridge University Press:  13 December 2016

Ritesh Sachan*
Affiliation:
Materials Science and Technology Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831
Yanwen Zhang
Affiliation:
Materials Science and Technology Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831; and Materials Science and Engineering, University of Tennessee, Knoxville, TN 37996
Xin Ou
Affiliation:
Institute of Ion Beam Physics and Materials Research, Helmholtz-Zentrum Dresden-Rassendorf, Dresden 01314, Germany
Christina Trautmann
Affiliation:
GSI Helmholtzzentrum für Schwerionenforschung GmbH, Darmstadt 64291, Germany; and Materialwissenschaft, Technische Universität Darmstadt, Darmstadt 64287, Germany
Matthew F. Chisholm
Affiliation:
Materials Science and Technology Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831
William J. Weber
Affiliation:
Materials Science and Technology Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831; and Materials Science and Engineering, University of Tennessee, Knoxville, TN 37996
*
a) Address all correspondence to this author. e-mail: [email protected]
Get access

Abstract

Here, we demonstrate the enhanced imaging capabilities of an aberration corrected scanning transmission electron microscope to advance the understanding of ion track structure in pyrochlore structured materials (i.e., Gd2Ti2O7 and Gd2TiZrO7). Track formation occurs due to the inelastic transfer of energy from incident ions to electrons, and atomic-level details of track morphology as a function of energy-loss are revealed in the present work. A comparison of imaging details obtained by varying collection angles of detectors is discussed in the present work. A quantitative analysis of phase identification using high-angle annular dark field imaging is performed on the ion tracks. Finally, a novel 3-dimensional track reconstruction method is provided that is based on depth-dependent imaging of the ion tracks. The technique is used in extracting the atomic-level details of nanoscale features, such as the disordered ion tracks, which are embedded in relatively thicker matrix. Another relevance of the method is shown by measuring the tilt of the ion tracks relative to the electron beam incidence that helps in knowing the structure and geometry of ion tracks quantitatively.

Type
Review
Copyright
Copyright © Materials Research Society 2016 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

Contributing Editor: Thomas Walther

This section of Journal of Materials Research is reserved for papers that are reviews of literature in a given area.

b)

This author was an editor of this journal during the review and decision stage. For the JMR policy on review and publication of manuscripts authored by editors, please refer to http://www.mrs.org/jmr-editor-manuscripts/.

References

REFERENCES

Studer, F. and Toulemonde, M.: Irradiation damage in magnetic insulators. Nucl. Instrum. Methods Phys. Res., Sect. B 65(1), 560 (1992).Google Scholar
Toulemonde, M., Assman, W., Dufour, C., Meftah, A., Studer, F., and Trautmann, C.: Ion Beam Science: Solved and Unsolved Problems (The Royal Danish Academy of Sciences and Letters, Copenhagen, 2006).Google Scholar
Matzke, H. and Kinoshita, M.: Polygonization and high burnup structure in nuclear fuels. J. Nucl. Mater. 247, 108 (1997).CrossRefGoogle Scholar
Lang, M., Zhang, F., Zhang, J., Wang, J., Lian, J., Weber, W.J., Schuster, B., Trautmann, C., Neumann, R., and Ewing, R.C.: Review of A2B2O7 pyrochlore response to irradiation and pressure. Nucl. Instrum. Methods Phys. Res., Sect. B 268(19), 2951 (2010).Google Scholar
Price, P.B.: Advances in solid state nuclear track detectors. Nucl. Tracks Radiat. Meas. 22(1–4), 9 (1993).CrossRefGoogle Scholar
Boscherini, M., Adriani, O., Bongi, M., Bonechi, L., Castellini, G., D'Alessandro, R., Gabbanini, A., Grandi, M., Menn, W., Papini, P., Ricciarini, S.B., Simon, M., Spillantini, P., Straulino, S., Taccetti, F., Tesi, M., and Vannuccini, E.: Radiation damage of electronic components in space environment. Nucl. Instrum. Methods Phys. Res., Sect. A 514(1–3), 112 (2003).Google Scholar
Weber, W.J., Zarkadoula, E., Pakarinen, O.H., Sachan, R., Chisholm, M.F., Liu, P., Xue, H., Jin, K., and Zhang, Y.: Synergy of elastic and inelastic energy loss on ion track formation in SrTiO3 . Sci. Rep. 5, 7726 (2015).CrossRefGoogle ScholarPubMed
Sachan, R., Pakarinen, O.H., Liu, P., Patel, M.K., Chisholm, M.F., Zhang, Y., Wang, X.L., and Weber, W.J.: Structure and band gap determination of irradiation-induced amorphous nano-channels in LiNbO3 . J. Appl. Phys. 117(13), 135902 (2015).CrossRefGoogle Scholar
Aidhy, D.S., Sachan, R., Zarkadoula, E., Pakarinen, O., Chisholm, M.F., Zhang, Y., and Weber, W.J.: Fast ion conductivity in strained defect-fluorite structure created by ion tracks in Gd2Ti2O7 . Sci. Rep. 5, 16297 (2015).CrossRefGoogle ScholarPubMed
Sickafus, K.E., Minervini, L., Grimes, R.W., Valdez, J.A., Ishimaru, M., Li, F., McClellan, K.J., and Hartmann, T.: Radiation tolerance of complex oxides. Science 289(5480), 748 (2000).Google Scholar
Ewing, R.C.: Nuclear waste disposal—pyrochlore (A2B2O7): Nuclear waste form for the immobilization of plutonium and “minor” actinides. J. Appl. Phys. 95(11), 5949 (2004).CrossRefGoogle Scholar
Wang, S.X., Begg, B.D., Wang, L.M., Ewing, R.C., Weber, W.J., and Kutty, K.V.G.: Radiation stability of gadolinium zirconate: A waste form for plutonium disposition. J. Mater. Res. 14(12), 4470 (1999).Google Scholar
Tuller, H.: Ionic conduction and applications. In Springer Handbook of Electronic and Photonic Materials, Kasap, S. and Capper, P., eds. (Springer, New York, 2007); p. 213.Google Scholar
Sattonnay, G., Sellami, N., Thomé, L., Legros, C., Grygiel, C., Monnet, I., Jagielski, J., Jozwik-Biala, I., and Simon, P.: Structural stability of Nd2Zr2O7 pyrochlore ion-irradiated in a broad energy range. Acta Mater. 61(17), 6492 (2013).Google Scholar
Jozwik-Biala, I., Jagielski, J., Thome, L., Arey, B., Kovarik, L., Sattonnay, G., Debelle, A., and Monnet, I.: HRTEM study of track evolution in 120-MeV U irradiated Gd2Ti2O7 . Nucl. Instrum. Methods Phys. Res., Sect. B 286, 258 (2012).Google Scholar
Jozwik-Biala, I., Jagielski, J., Arey, B., Kovarik, L., Sattonnay, G., Debelle, A., Mylonas, S., Monnet, I., and Thomé, L.: Effect of combined local variations in elastic and inelastic energy losses on the morphology of tracks in ion-irradiated materials. Acta Mater. 61(12), 4669 (2013).Google Scholar
Pennycook, S.J., Chisholm, M.F., Lupini, A.R., Varela, M., Borisevich, A.Y., Oxley, M.P., Luo, W.D., van Benthem, K., Oh, S.H., Sales, D.L., Molina, S.I., Garcia-Barriocanal, J., Leon, C., Santamaria, J., Rashkeev, S.N., and Pantelides, S.T.: Aberration-corrected scanning transmission electron microscopy: From atomic imaging and analysis to solving energy problems. Philos. Trans. A Math. Phys. Eng. Sci. 367(1903), 3709 (2009).Google Scholar
Ziegler, J.F., Biersack, J.P., and Ziegler, M.D.: SRIM, The Stopping and Range of Ions in Matter (Pergamon Press, New York, 2008).Google Scholar
Weber, W.J., Duffy, D.M., Thomé, L., and Zhang, Y.: The role of electronic energy loss in ion beam modification of materials. Curr. Opin. Solid State Mater. Sci. 19, 1 (2015).Google Scholar
Marks, L.D. and Voyles, P.M.: When is Z-contrast D-contrast? Microsc. Today 22(1), 65 (2014).Google Scholar
Zhang, J.M., Lang, M., Ewing, R.C., Devanathan, R., Weber, W.J., and Toulemonde, M.: Nanoscale phase transitions under extreme conditions within an ion track. J. Mater. Res. 25(7), 1344 (2010).Google Scholar
Lang, M., Toulemonde, M., Zhang, J., Zhang, F., Tracy, C.L., Lian, J., Wang, Z., Weber, W.J., Severin, D., Bender, M., Trautmann, C., and Ewing, R.C.: Swift heavy ion track formation in Gd2Zr2−x Ti x O7 pyrochlore: Effect of electronic energy loss. Nucl. Instrum. Methods Phys. Res., Sect. B 336, 102 (2014).CrossRefGoogle Scholar
Lang, M., Lian, J., Zhang, J., Zhang, F., Weber, W.J., Trautmann, C., and Ewing, R.C.: Single-ion tracks in Gd2Zr2−x Ti x O7 pyrochlores irradiated with swift heavy ions. Phys. Rev. B: Condens. Matter Mater. Phys. 79(22), 224105 (2009).Google Scholar
Lang, M., Devanathan, R., Toulemonde, M., and Trautmann, C.: Advances in understanding of swift heavy-ion tracks in complex ceramics. Curr. Opin. Solid State Mater. Sci. 19(1), 39 (2015).Google Scholar
Sachan, R., Liu, B., Aidhy, D., Zhang, Y., Chisholm, M.F., and Weber, W.J.: Short-range atomic ordering in amorphous ion-tracks in pyrochlores. Microsc. Microanal. 21(S3), 1333 (2015).Google Scholar
Shamblin, J., Feygenson, M., Neuefeind, J., Tracy, C.L., Zhang, F., Finkeldei, S., Bosbach, D., Zhou, H., Ewing, R.C., and Lang, M.: Probing disorder in isometric pyrochlore and related complex oxides. Nat. Mater. 15, 507 (2016).Google Scholar
Klenov, D.O. and Stemmer, S.: Limitations in through-focus depth sectioning in non-aberration corrected high-angle annular dark-field imaging. Jpn. J. Appl. Phys. 45(23), L602 (2006).Google Scholar
Borisevich, A.Y., Lupini, A.R., and Pennycook, S.J.: Depth sectioning with the aberration-corrected scanning transmission electron microscope. Proc. Natl. Acad. Sci. U.S.A. 103(9), 3044 (2006).Google Scholar
Ishikawa, R., Lupini, A.R., Findlay, S.D., Taniguchi, T., and Pennycook, S.J.: Three-dimensional location of a single dopant with atomic precision by aberration-corrected scanning transmission electron microscopy. Nano Lett. 14(4), 1903 (2014).Google Scholar
Sachan, R., Zarkadoula, E., Lang, M., Trautmann, C., Zhang, Y., Chisholm, M.F., and Weber, W.J.: Insights on dramatic radial fluctuations in track formation by energetic ions. Sci. Rep. 6, 27196 (2016).Google Scholar