Hostname: page-component-586b7cd67f-t7fkt Total loading time: 0 Render date: 2024-11-27T04:35:04.877Z Has data issue: false hasContentIssue false

Nanostructures in Ti processed by severe plastic deformation

Published online by Cambridge University Press:  31 January 2011

Y. T. Zhu
Affiliation:
Materials Science and Technology Division, MS G755, Los Alamos National Laboratory, Los Alamos, New Mexico 87545
J. Y. Huang
Affiliation:
Materials Science and Technology Division, MS G755, Los Alamos National Laboratory, Los Alamos, New Mexico 87545
J. Gubicza
Affiliation:
Department of General Physics, Eötvös University, Budapest, P.O. Box 32, H-1518, Hungary
T. Ungár
Affiliation:
Department of General Physics, Eötvös University, Budapest, P.O. Box 32, H-1518, Hungary
Y. M. Wang
Affiliation:
Department of Materials Science and Engineering, The John Hopkins University, Baltimore, Maryland 21218
E. Ma
Affiliation:
Department of Materials Science and Engineering, The John Hopkins University, Baltimore, Maryland 21218
R. Z. Valiev
Affiliation:
Institute of Physics of Advanced Materials, Ufa State Aviation Technical University, Ufa 450000, K. Marksa 12, Russia
Get access

Abstract

Metals and alloys processed by severe plastic deformation (SPD) can demonstrate superior mechanical properties, which are rendered by their unique defect structures. In this investigation, transmission electron microscopy and x-ray analysis were used to systematically study the defect structures, including grain and subgrain structures, dislocation cells, dislocation distributions, grain boundaries, and the hierarchy of these structural features, in nanostructured Ti produced by a two-step SPD procedure—warm equal channel angular pressing followed by cold rolling. The effects of these defect structures on the mechanical behaviors of nanostructured Ti are discussed.

Type
Articles
Copyright
Copyright © Materials Research Society 2003

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Sanders, P.G., Eastman, J.A., and Weertman, J.R., Acta Mater. 45, 4019 (1997).CrossRefGoogle Scholar
Horita, Z., Furukawa, M., Nemoto, M., Barnes, A.J., and Langdon, T.G., Acta. Mater. 48, 3633 (2000).CrossRefGoogle Scholar
McFadden, X., Mishra, R.S., Valiev, R.Z., Zhilyaev, A.P., and Mukherjee, A.K., Nature 398, 684 (1999).CrossRefGoogle Scholar
Valiev, R.Z., Islamgaliev, R.K., and Alexandrov, I.V., Prog. Mater. Sci. 45, 103 (2000).CrossRefGoogle Scholar
Agnew, S.R., Elliott, B.R., Yongdahl, C.J., Hemker, K.J., and Weertman, J.R., Mater. Sci. Eng. A 285, 391 (2000).CrossRefGoogle Scholar
Horita, Z., Fujinami, T., Nemoto, M., and Langdon, T.G., Metall. Mater. Trans. 31A, 691 (2000).CrossRefGoogle Scholar
Stolyarov, V.V., Zhu, Y.T., Alexandrov, I.V., Lowe, T.C., and Valiev, R.Z., Mater. Sci. Eng. A 299, 59 (2000).CrossRefGoogle Scholar
Stolyarov, V.V., Zhu, Y.T., Lowe, T.C., and Valiev, R.Z., Mater. Sci. Eng. A 303, 82 (2001).CrossRefGoogle Scholar
Jia, D., Wang, Y.M., Ramesh, K.T., Ma, E., Zhu, Y.T., Valiev, R.Z., Appl. Phys. Lett. 79, 611 (2001).CrossRefGoogle Scholar
Valiev, R.Z., Alexandrov, I.V., Zhu, Y.T., and Lowe, T.C., J. Mater. Res. 17, 5 (2002).CrossRefGoogle Scholar
Zhu, Y.T., Jiang, H., Huang, J.Y., and Lowe, T.C., Metall. Mater. Trans. 32A, 1559 (2001).CrossRefGoogle Scholar
Brandes, E.A. and Brook, G.B., Smithells Metals Reference Book, 7th ed. (Butterworth-Heinemann Ltd., Oxford, U.K., 1992), Chapter 22.Google Scholar
Parker, E.R., Materials Data Book for Engineers and Scientists (McGraw-Hill Book Co., New York, 1967).Google Scholar
Hecker, S.S. and Stout, M.G., Deformation, Processing and Structure, edited by Krauss, G. (ASM, Materials Park, OH, 1984), pp. 115.Google Scholar
Huang, J.Y., Zhu, Y.T., Jiang, H., and Lowe, T.C., Acta Mater. 49, 1497 (2001).CrossRefGoogle Scholar
Bay, B., Hansen, N., Hughes, D.A., and Kuhlmann-Wilsdorf, D., Acta Mater. 40, 205 (1992).CrossRefGoogle Scholar
Hansen, N. and Huang, X., Acta Mater. 46, 1827 (1998).CrossRefGoogle Scholar
Liu, Q., Jensen, D. Juul, and Hansen, N., Acta Mater. 46, 5819 (1998).CrossRefGoogle Scholar
Horita, Z., Smith, D.J., Nemoto, M., Valiev, R.Z., and Langdon, T.G., J. Mater. Res. 13, 446 (1998).CrossRefGoogle Scholar
Oh-ishi, K., Horita, Z., Smith, D.J., and Langdon, T.G., J. Mater. Res. 16, 583 (2001).CrossRefGoogle Scholar
Valiev, R.Z., Song, C., McFadden, S.X., Mukherjee, A.K., Mishra, R.S., Philos. Mag. A 81, 25 (2001).CrossRefGoogle Scholar
Stolyarov, V.V., Zhu, Y.T., Alexandrov, I.V., Lowe, T.C., and Valiev, R.Z., J. Nanosci. Nanotechnol. 237, (2001).Google Scholar
Ungár, T., Gubicza, J., Ribárik, G., and Borbély, A., J. Appl. Crystallogr. 34, 298 (2001).CrossRefGoogle Scholar
Ribárik, G., Ungár, T., and Gubicza, J., J. Appl. Crystallogr. 34, 669 (2001).CrossRefGoogle Scholar
Wilkens, M., Phys. Status Solidi A 2, 359 (1970).CrossRefGoogle Scholar
Wilkens, M., in Fundamental Aspects of Dislocation Theory, edited by Simmons, J.A., Wit, R. de, and Bullough, R. (U.S. Nat. Bur. Stand. Spec. Publ. 317, Washington, DC, 1970), Vol. II, p. 1195.Google Scholar
Dragomir, C.I. and Ung, T.ár, J. Appl. Crystalogr. 35, 556 (2002).CrossRefGoogle Scholar
Hinds, W.C., Aerosol Technology: Properties, Behavior and Measurement of Airbone Particles (Wiley, New York, 1982).Google Scholar
Langford, J.I., Louër, D., Scardi, P., J. Appl. Crystallogr. 33, 964 (2000).CrossRefGoogle Scholar
Valiev, R.Z., Gertsman, V. Yu, and Kaibyshev, O.A., Phys. Status Solidi A 97, 11 (1986).CrossRefGoogle Scholar
Farenc, S., Caillard, D., and Couret, A., Acta Metall. Mater. 41, 2701 (1993).CrossRefGoogle Scholar
Chichili, D.R., Ramesh, R.K.T., and Hemker, K.J., Acta Mater. 46, 1025 (1998).CrossRefGoogle Scholar
Girschick, A., Pettifor, D.G., and Vitek, V., Philos. Mag. A 77, 999 (1998).CrossRefGoogle Scholar
Alexandrov, I.V., Zhang, K., Kilametov, A.R., Lu, K., Valiev, R.Z., Mater. Sci. Eng. A 234–236, 331 (2001).Google Scholar
Isonishi, K. and Okazaki, K., J. Mater. Sci. 28, 3829 (1993).CrossRefGoogle Scholar
Fecht, H.J., Hellstern, E., Fu, Z., and Johnson, W.L., Metall. Trans. 21A, 2333 (1990).CrossRefGoogle Scholar
He, L. and Ma, E., NanoStruct. Mater. 7, 327 (1996).CrossRefGoogle Scholar
Lu, K., Zhang, H.Y., Zhong, Y., and Fecht, H.J., J. Mater. Res. 12, 923 (1997).CrossRefGoogle Scholar
Nieman, G.W., Weertman, J.R., and Siegel, R.W., J. Mater. Res. 6, 1012 (1991).CrossRefGoogle Scholar
Song, S.G. and Gray, G.T. III, Acta Metall. Mater. 43, 2339 (1995).CrossRefGoogle Scholar
Kim, I., Kim, J., Shin, D.H., Liao, X.Z., and Zhu, Y.T., Scripta Mater. 48, 813 (2003).CrossRefGoogle Scholar
Shin, D.H., Kim, I., Kim, J., Kim, Y.S., and Semiatin, S.L., Acta Mater. 51, 983 (2002).CrossRefGoogle Scholar
Jones, I.P. and Hutchinson, W.B., Acta Metall. 29, 951 (1981).CrossRefGoogle Scholar
Chatterjee, P. and Sen, S.P. Gupta, Philos. Mag. A 81, 49 (2001).CrossRefGoogle Scholar
Chandra, H., Embury, J.D., and Kocks, U.F., Scripta Metall. 16, 493 (1982).CrossRefGoogle Scholar
Hansen, N. and Huang, X., Acta Mater. 46, 1827 (1998).CrossRefGoogle Scholar
Liu, Q., Maurice, C., Driver, J., and Hansen, N., Metall. Mater. Trans. 29A, 2333 (1999).Google Scholar
Prangnell, P.B. and Bowen, J.R., in Ultrafine Grained Materials II, edited by Zhu, Y.T., Langdon, T.G., Mishra, R.S., Semiatin, S.L., Saran, M.J., and Lowe, T.C. (TMS, Warrendale, PA, 2002), pp. 8998.CrossRefGoogle Scholar
Shin, D.H., Kim, I., Kim, J., and Zhu, Y.T., Mater. Sci, Eng. A 334, 239 (2002).CrossRefGoogle Scholar
Salem, A.A., Kalidini, S.R., and Doherty, R.D., Scripta Mater. 46, 419 (2002).CrossRefGoogle Scholar
Jiang, H., Zhu, Y.T., Butt, D.P., Alexandrov, I.V., and Lowe, T.C., Mater. Sci. Eng. A 290, 128 (2000).CrossRefGoogle Scholar
Park, K.T. and Shin, D.H., Metall. Mater. Trans. A 33, 705 (2002).CrossRefGoogle Scholar
Hertzberg, R.W., Deformation and Fracture Mechanics of Engineering Materials, 3rd ed. (John Wiley and Sons, New York, 1989), p. 392.Google Scholar
Hall, E.O., Proc. Phys. Soc. Series B 64, 747 (1951).CrossRefGoogle Scholar
Petch, N.J., J. Iron and Steel Inst. 174, 25 (1953).Google Scholar
Salem, A.A., Kalidindi, S.R., and Doherty, R.D., Scripta Mater. 46, 419 (2002).CrossRefGoogle Scholar
Cottrell, A.H., Transactions of the Metallurgical Society of AIME 212, 192 (1963).Google Scholar
Meyers, M.A. and Ashworth, E., Philos. Mag. 35, 1161 (1977).Google Scholar
Muñoz-Morris, M.A., Oca, C.G., and Morris, D.G., Scripta Mater. 48, 213 (2003).CrossRefGoogle Scholar
Kocks, U.F. and Mecking, H., Prog. Mater. Sci. 48, 171 (2003).CrossRefGoogle Scholar
Honeycombe, R.W.K., The Plastic Deformation of Metals (Edward Arnold, London, U.K., 1984), p. 129.Google Scholar