Hostname: page-component-745bb68f8f-hvd4g Total loading time: 0 Render date: 2025-01-10T12:17:04.876Z Has data issue: false hasContentIssue false

Nanostructured surface coatings for titanium alloy implants

Published online by Cambridge University Press:  04 March 2019

Guy Louarn*
Affiliation:
Institut des Matériaux Jean Rouxel (IMN), CNRS, University of Nantes, Nantes 44300, France
Laetitia Salou
Affiliation:
Institut des Matériaux Jean Rouxel (IMN), CNRS, University of Nantes, Nantes 44300, France; and Phys-Os, Faculty of Medicine, INSERM, University of Nantes, Nantes 44000, France
Alain Hoornaert
Affiliation:
Department of Oral Implantology, CHU Nantes, Nantes, Nantes 44000, France
Pierre Layrolle
Affiliation:
Phys-Os, Faculty of Medicine, INSERM, University of Nantes, Nantes 44000, France
*
a)Address all correspondence to this author. e-mail: [email protected]
Get access

Abstract

Surface properties of titanium implants are key factors for rapid and stable bone tissue integration. So, in order to promote the osseointegration of implants, various surface treatments have been proposed. The objective of these surface treatments is to improve protein adsorption, cell adhesion and differentiation, and consequently, the tissue integration of titanium implants. In this paper, we propose to describe and compare the different strategies available in the literature to produce micro- and nanostructured surfaces on titanium, especially the recent results using electrochemical anodization. Anodization is a cost-effective process that produces nanostructures based on the electrolytic growth of columnar titanium oxide layers. By mastering the electrolyte composition and voltage, a regular array of pores with controlled diameters ranging from 15 to 200 nm are easily produced. Then we will present the latest results on the osteointegration of the surface composed anodized titania nanotubes.

Type
Article
Copyright
Copyright © Materials Research Society 2019 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Ponsonnet, L., Reybier, K., Jaffrezic, N., Comte, V., Lagneau, C., Lissac, M., and Martelet, C.: Relationship between surface properties (roughness, wettability) of titanium and titanium alloys and cell behaviour. Mater. Sci. Eng., C 23, 551560 (2003).CrossRefGoogle Scholar
Gittens, R.A., Olivares-Navarrete, R., Cheng, A., Anderson, D.M., McLachlan, T., Stephan, I., Geis-Gerstorfer, J., Sandhage, K.H., Fedorov, A.G., Rupp, F., Boyan, B.D., Tannenbaum, R., and Schwartz, Z.: The roles of titanium surface micro/nanotopography and wettability on the differential response of human osteoblast lineage cells. Acta Biomater. 9, 62686277 (2013).CrossRefGoogle ScholarPubMed
Le Guehennec, L., Soueidan, A., Layrolle, P., and Amouriq, Y.: Surface treatments of titanium dental implants for rapid osseointegration. Dent. Mater. 23, 844854 (2007).CrossRefGoogle ScholarPubMed
Stanford, C.M.: Surface modifications of dental implants. Aust. Dent. J. 53(Suppl. 1), S26S33 (2008).CrossRefGoogle ScholarPubMed
Junker, R., Dimakis, A., Thoneick, M., and Jansen, J.A.: Effects of implant surface coatings and composition on bone integration: A systematic review. Clin. Oral Implants Res. 20(Suppl. 4), 185206 (2009).CrossRefGoogle Scholar
Amarante, E.S., Chambrone, L., Moreira Lotufo, R.F., and Lima, L.A.: Early dental plaque formation on toothbrushed titanium implant surfaces. Am. J. Dent. 21, 318322 (2008).Google ScholarPubMed
Krishna Alla, R., Ginjupalli, K., Upadhya, N., Shammas, M., Krishna Ravi, R., and Sekhar, R.: Surface roughness of implants: A review. Trends Biomater. Artif. Organs 25, 112118 (2011).Google Scholar
Elizabeth, E., Baranwal, G., Krishnan, A.G., Menon, D., and Nair, M.: ZnO nanoparticle incorporated nanostructured metallic titanium for increased mesenchymal stem cell response and antibacterial activity. Nanotechnology 25, 115101 (2014).CrossRefGoogle ScholarPubMed
Li, Y., Xiong, W., Zhang, C., Gao, B., Guan, H., Cheng, H., Fu, J., and Li, F.: Enhanced osseointegration and antibacterial action of zinc-loaded titania-nanotube-coated titanium substrates: In vitro and in vivo studies. J. Biomed. Mater. Res., Part A 102, 39393950 (2014).CrossRefGoogle ScholarPubMed
Oh, S., Brammer, K.S., Li, Y.S.J., Teng, D., Engler, A.J., Chien, S., and Jin, S.: Stem cell fate dictated solely by altered nanotube dimension. Proc. Natl. Acad. Sci. U. S. A. 106, 21302135 (2009).CrossRefGoogle ScholarPubMed
Lavenus, S., Ricquier, J-C., Louarn, G., and Layrolle, P.: Cell interaction with nanopatterned surface of implants. Nanomedicine 5, 937947 (2010).CrossRefGoogle ScholarPubMed
Lavenus, S., Trichet, V., Le Chevalier, S., Hoornaert, A., Louarn, G., and Layrolle, P.: Cell differentiation and osseointegration influenced by nanoscale anodized titanium surfaces. Nanomedicine 7, 967980 (2012).CrossRefGoogle ScholarPubMed
Brammer, K.S., Frandsen, C.J., and Jin, S.: TiO2 nanotubes for bone regeneration. Trends Biotechnol. 30, 315322 (2012).CrossRefGoogle ScholarPubMed
Durmus, N.G. and Webster, T.J.: Nanostructured titanium: The ideal material for improving orthopedic implant efficacy? Nanomedicine 7, 791793 (2012).CrossRefGoogle ScholarPubMed
Descamps, S., Awitor, K.O., Raspal, V., Johnson, M.B., Bokalawela, R.S.P., Larson, P.R., and Doiron, C.F.: Mechanical properties of nanotextured titanium orthopedic screws for clinical applications. J. Med. Dev. 7, 02100510210055 (2013).Google ScholarPubMed
Sul, Y-T.: Electrochemical growth behavior, surface properties, and enhanced in vivo bone response of TiO2 nanotubes on microstructured surfaces of blasted, screw-shaped titanium implants. Int. J. Nanomed. 5, 87100 (2010).CrossRefGoogle ScholarPubMed
Lee, J-K., Choi, D-S., Jang, I., and Choi, W-Y.: Improved osseointegration of dental titanium implants by TiO2 nanotube arrays with recombinant human bone morphogenetic protein-2: A pilot in vivo study. Int. J. Nanomed. 10, 11451154 (2015).Google ScholarPubMed
Mor, G.K., Carvalho, M.A., Varghese, O.K., Pishko, M.V., and Grimes, C.A.: A room-temperature TiO2-nanotube hydrogen sensor able to self-clean photoactively from environmental contamination. J. Mater. Res. 19, 628634 (2004).CrossRefGoogle Scholar
Mor, G.K., Varghese, O.K., Paulose, M., Shankar, K., and Grimes, C.A.: A review on highly ordered, vertically oriented TiO2 nanotube arrays: Fabrication, material properties, and solar energy applications. Sol. Energy Mater. Sol. Cells 90, 20112075 (2006).CrossRefGoogle Scholar
Anitha, V.C., Menon, D., Nair, S.V., and Prasanth, R.: Electrochemical tuning of titania nanotube morphology in inhibitor electrolytes. Electrochim. Acta 55, 37033713 (2010).CrossRefGoogle Scholar
Rosales-Leal, J.I., Rodríguez-Valverde, M.A., Mazzaglia, G., Ramón-Torregrosa, P.J., Díaz-Rodríguez, L., García-Martínez, O., Vallecillo-Capilla, M., Ruiz, C., Cabrerizo-Vílchez, M.A.: Effect of roughness, wettability and morphology of engineered titanium surfaces on osteoblast-like cell adhesion. Colloids Surf., A 365, 222229 (2010).CrossRefGoogle Scholar
Abbasi-Firouzjah, M., Rezaei, F.: Investigation of antibacterial and wettability behaviours of plasma-modified PMMA films for application in ophthalmology. J. Phys. D: Appl. Phys. 47, 085401 (2014).Google Scholar
Antony, R.P., Mathews, T., Dash, S., Tyagi, A.K., and Raj, B.: X-ray photoelectron spectroscopic studies of anodically synthesized self aligned TiO2 nanotube arrays and the effect of electrochemical parameters on tube morphology. Mater. Chem. Phys. 132, 957966 (2012).CrossRefGoogle Scholar
Kang, C-G., Park, Y-B., Choi, H., Oh, S., Lee, K.W., Choi, S-H., and Shim, J-S.: Osseointegration of implants surface treated with various diameters of TiO2 nanotubes in rabbit. J. Nanomater. 2015, e634650 (2015).CrossRefGoogle Scholar
Salou, L., Hoornaert, A., Louarn, G., and Layrolle, P.: Enhanced osseointegration of titanium implants by nanostructured surface: An experimental study in rabbits. Acta Biomater. 11, 494502 (2015).CrossRefGoogle ScholarPubMed
Salou, L., Hoornaert, A., Stanovici, J., Briand, S., Louarn, G., and Layrolle, P.: Comparative bone tissue integration of nanostructured and micro-rougheneddental implants. Nanomedicine 10, 741751 (2015).CrossRefGoogle ScholarPubMed
Mellado-Valero, A., Buitrago-Vera, P., Soli-Ruiz, M.F., and Ferrer-Garcia, J.C.: Decontamination of dental implant surface in peri-implantitis treatment: A literature review. Medicina Oral, Patologa Oral y Ciruga Bucal 18, e869e876 (2013).CrossRefGoogle ScholarPubMed
Dennison, D.K., Huerzeler, M.B., Quinones, C., and Caffesse, R.G.: Contaminated implant surfaces: An in vitro comparison of implant surface coating and treatment modalities for decontamination. J. Periodontol. 65, 942948 (1994).CrossRefGoogle Scholar
Salou, L., Hoornaert, A., Louarn, G., and Layrolle, P.: Bone apposition on nanoporous titanium implants. In Handbook of Nanoceramic and Nanocomposite Coatings and Materials, Makhlouf, A.S.H. and Scharnweber, D., eds. (Elseivier, 2015); ch. 20, pp. 427444.CrossRefGoogle Scholar
Peng Xiao, D.L.: Electrochemical and photoelectrical properties of titania nanotube arrays annealed in different gases. Sens. Actuators, B 134, 367372 (2008).CrossRefGoogle Scholar
Saji, V.S., Cheol Choe, H., and Brantley, W.A.: An electrochemical study on self-ordered nanoporous and nanotubular oxide on Ti35Nb5Ta7Zr alloy for biomedical applications. Acta Biomater. 5, 23032310 (2009).CrossRefGoogle Scholar