Hostname: page-component-745bb68f8f-cphqk Total loading time: 0 Render date: 2025-01-24T13:00:59.398Z Has data issue: false hasContentIssue false

Nanostructured high-temperature superconductors: Creation of strong-pinning columnar defects in nanorod/superconductor composites

Published online by Cambridge University Press:  31 January 2011

Peidong Yang
Affiliation:
Division of Engineering and Applied Sciences, and Department of Chemistry, Harvard University, Cambridge, Massachusetts 02138
Charles M. Lieber
Affiliation:
Division of Engineering and Applied Sciences, and Department of Chemistry, Harvard University, Cambridge, Massachusetts 02138
Get access

Abstract

A chemical approach to the formation of columnar defects involving the growth and incorporation of MgO nanorods into high temperature superconductors (HTS's) has been developed. MgO nanorods were incorporated into Bi2Sr2CaCu2Oz, Bi2Sr2Ca2Cu3Oz, and Tl2Ba2Ca2Cu3Oz superconductors at areal densities up to 2 × 1010/cm2. Microstructural analyses of the composites demonstrate that the MgO nanorods create a columnar defect structure in the HTS matrices, form a compositionally sharp interface with the matrix, and self-organize into orientations perpendicular and parallel to the copper oxide planes. Measurements of the critical current density demonstrate significant enhancements in the MgO nanorod/HTS composites at elevated temperatures and magnetic fields compared with reference samples.

Type
Articles
Copyright
Copyright © Materials Research Society 1997

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Lubkin, G. B., Phys. Today 49, 48 (1996).CrossRefGoogle Scholar
2.Grant, P. M., Nature 375, 107 (1995).CrossRefGoogle Scholar
3.Larbalestier, D. C., Science 274, 736 (1996).Google Scholar
4.Bishop, D. J., Grammel, P. L., Huse, D. A., and Murray, C. A., Science 255, 165 (1992).CrossRefGoogle ScholarPubMed
5.Fisher, D. S., Fisher, M. P. A., and Huse, D. A., Phys. Rev. B 43, 130 (1991).CrossRefGoogle Scholar
6.Blatter, G., Feigelman, M. V., Geshkenbein, V. B., Larkin, A. I., and Vinokur, V. M., Rev. Mod. Phys. 66, 1125 (1994).CrossRefGoogle Scholar
7.Polak, M., Parrell, J. A., Polyanskii, A. A., Pashitski, A. E., and Larbalestier, D. C., Appl. Phys. Lett. 70, 1034 (1997).CrossRefGoogle Scholar
8.Welp, U., Gunter, D. O., Crabtree, G. W., Zhong, W., Balachandran, U., Haldar, P., Sokolowski, R. S., Vlasko-Vlasov, V. K., and Nikitenko, N., Nature 376, 44 (1995).CrossRefGoogle Scholar
9.Norton, D. P., Goyal, A., Budai, J. D., Christen, D. K., Kroeger, D. M., Specht, E. D., He, Q., Saffian, B., Paranthaman, M., Klabunde, C. E., Lee, D. F., Sales, B. C., and List, F. A., Science 274, 755 (1996).CrossRefGoogle Scholar
10.Grant, P. M., Nature 381, 559 (1996).CrossRefGoogle Scholar
11.Larbalestier, D. C., Cai, X. Y., Feng, Y., Edelman, H., Umezawa, A., Riley, G. N. Jr, and Carter, W. L., Physica C 221, 299 (1994).CrossRefGoogle Scholar
12.Li, Q., Wiesman, H. J., Suenaga, M., Motowidlo, L., and Haldar, P., Appl. Phys. Lett. 66, 637 (1995).CrossRefGoogle Scholar
13.Majewski, P., Adv. Mater. 6, 593 (1994).CrossRefGoogle Scholar
14.Nelson, D. R. and Vinokur, V. M., Phys. Rev. Lett. 68, 2398 (1992).CrossRefGoogle Scholar
15.Hwa, T., Doussal, P. Le, Nelson, D. R., and Vinokur, V. M., Phys. Rev. Lett. 71, 3545 (1993).CrossRefGoogle Scholar
16.Civale, L., Marwick, A. D., Worthington, T. K., Kirk, M. A., Thompson, J. R., Krusin-Elbaum, L., Sun, Y., Clem, J. R., and Holtzberg, F., Phys. Rev. Lett. 67, 648 (1991).CrossRefGoogle Scholar
17.Budhani, R. C., Suenaga, M., and Liou, S. H., Phys. Rev. Lett. 69, 3816 (1992).CrossRefGoogle Scholar
18.Konczykowski, M., Chikumoto, N., Vinokur, V., and Feigel'man, M. V., Phys. Rev. B 51, 3957 (1995).CrossRefGoogle Scholar
19.Zhu, Y., Cai, Z. X., Budhani, R. C., Suenaga, M., and Welch, D. O., Phys. Rev. B 48, 6436 (1993).CrossRefGoogle Scholar
20.Thompson, J. R., Paul, D., Wang, Z. L., Kroeger, D. M., and Christen, D. K., Appl. Phys. Lett. 67, 1007 (1995).Google Scholar
21.Krusin-Elbaum, L., Thompson, J. R., Wheeler, R., Marwick, A. D., Li, C., Patel, S., Shaw, D. T., Lisowski, P., and Ullmann, J., Appl. Phys. Lett. 64, 3331 (1994).CrossRefGoogle Scholar
22.Safar, H., Cho, J. H., Fleshler, S., Maley, M. P., Willis, J. O., Coulter, J. Y., Ullmann, J. L., Lisowski, P. W., Riley, G. N. Jr, Rupich, M. W., Thompson, J. R., and Krusin-Elbaum, L., Appl. Phys. Lett. 67, 130 (1995).CrossRefGoogle Scholar
23.Doussal, P. Le and Nelson, D. R., Physica C 232, 69 (1994).CrossRefGoogle Scholar
24.Fossheim, K., Tuset, E. D., Ebbessen, T. W., Treasy, M. M. J., and Schwarz, J., Physica C 248, 195 (1995).Google Scholar
25.Dai, H., Wong, E., Lu, Y., Fan, S., and Lieber, C. M., Nature 375, 769 (1995).CrossRefGoogle Scholar
26.Yang, P. and Lieber, C. M., Science 273, 1836 (1996).CrossRefGoogle Scholar
27.Adamopoulos, N., Soylu, B., Yan, Y., and Evetts, J. E., Physica C 242, 68 (1993).CrossRefGoogle Scholar
28.Yuan, Y. S., Wong, M. S., and Wang, S. S., J. Mater. Res. 11, 8 (1996).CrossRefGoogle Scholar
29.Yang, P. and Lieber, C. M., Appl. Phys. Lett. 70, 3158 (1997).CrossRefGoogle Scholar
30.Lieber, C. M. and Yang, P., patent pending, Ser. No. #08/606,892.Google Scholar
31.Itoh, H., Utamapanya, S., Stark, J. V., Klabunde, K. J., and Schlup, J. R., Chem. Mater. 5, 71 (1993).CrossRefGoogle Scholar
32.Morales, A., Yang, P., and Lieber, C. M., J. Am. Chem. Soc. 116, 8360 (1994).CrossRefGoogle Scholar
33.Li, C., Patel, S., Ye, J., Narumi, E., Shaw, D. T., and Sato, T., Appl. Phys. Lett. 63, 2558 (1993).CrossRefGoogle Scholar
34.Brousse, T., Poullain, G., Hamet, J. F., Murray, H., and Raveau, B., Physica C 170, 545 (1990).CrossRefGoogle Scholar
35.Tabata, H., Kawai, T., Kanai, M., Murata, O., and Kawai, S., Jpn. J. Appl. Phys. 28, L430 (1989).CrossRefGoogle Scholar
36.Holstein, W. L. and Parisi, L. A., J. Mater. Res. 11, 1349 (1996).CrossRefGoogle Scholar
37.Bean, C. P., Rev. Mod. Phys. 36, 31 (1964).CrossRefGoogle Scholar
38.Campbell, W. B., in Whisker Technology, edited by Levitt, A. P. (Wiley, New York, 1990), p. 15.Google Scholar
39.Wolff, E. G. and Coskren, T. D., J. Am. Ceram. Soc. 48, 279 (1965).CrossRefGoogle Scholar
40.Stark, J. V., Park, D. G., Lagadic, I., and Klabunde, K. J., Chem. Mater. 8, 1904 (1996).CrossRefGoogle Scholar
41.Uhlmann, D. R., Chalmers, B., and Jackson, K. A., J. Appl. Phys. 35, 2986 (1964).Google Scholar
42.Nakamura, Y., Endo, A., and Shiohara, Y., J. Mater. Res. 11, 1094 (1996).CrossRefGoogle Scholar
43.Kim, C., Kim, K., Hong, G., and Lee, H., J. Mater. Res. 10, 1605 (1995).CrossRefGoogle Scholar
44.Endo, A., Chauhan, H., Egi, T., and Shiohara, Y., J. Mater. Res. 11, 795 (1996).Google Scholar
45.Murakami, M., Prog. Mater. Sci. 38, 311 (1994).CrossRefGoogle Scholar
46.Nagai, Y. and Tsuru, K., Jpn. J. Appl. Phys. 29, L1600 (1990).CrossRefGoogle Scholar
47.Ohkuho, M., Brecht, E., Linker, G., Geerk, J., and Meyer, O., Appl. Phys. Lett. 69, 574 (1996).CrossRefGoogle Scholar