Hostname: page-component-78c5997874-lj6df Total loading time: 0 Render date: 2024-11-05T13:13:01.184Z Has data issue: false hasContentIssue false

Nanostructured high specific capacity C-LiFePO4 cathode material for lithium-ion batteries

Published online by Cambridge University Press:  11 November 2011

Khadije Bazzi
Affiliation:
Department of Physics and Astronomy, Wayne State University, Detroit, Michigan 48201
Kulwinder S. Dhindsa
Affiliation:
Department of Physics and Astronomy, Wayne State University, Detroit, Michigan 48201
Ambesh Dixit
Affiliation:
Department of Physics and Astronomy, Wayne State University, Detroit, Michigan 48201
Moodakere B. Sahana
Affiliation:
Department of Physics and Astronomy, Wayne State University, Detroit, Michigan 48201
Chandran Sudakar
Affiliation:
Department of Physics and Astronomy, Wayne State University, Detroit, Michigan 48201
Mariam Nazri
Affiliation:
Applied Sciences Inc., Cedarville, Ohio 45314
Zhixian Zhou
Affiliation:
Department of Physics and Astronomy, Wayne State University, Detroit, Michigan 48201
Prem Vaishnava
Affiliation:
Department of Physics, Kettering University, Flint, Michigan 48504
Vaman M. Naik
Affiliation:
Department of Natural Sciences, University of Michigan-Dearborn, Dearborn, Michigan 48128
Gholam A. Nazri
Affiliation:
Department of Physics and Astronomy, Wayne State University, Detroit, Michigan 48201
Ratna Naik*
Affiliation:
Department of Physics and Astronomy, Wayne State University, Detroit, Michigan 48201
*
a)Address all correspondence to this author. e-mail: [email protected]
Get access

Abstract

We report synthesis of nanosize LiFePO4 and C-LiFePO4 powders with a narrow particle size distribution (20–30 nm) by ethanol-based sol–gel method using lauric acid (LA) as a surfactant for high specific capacity lithium-ion battery cathode material. X-ray diffraction measurements demonstrated that the samples were single-phase materials without any impurity phases. The average crystallite size was found to decrease slightly from 29 nm to approximately 23 nm with carbon coating. The ratio of the Raman D-band (∼1350 cm−1) to G-band (∼1590 cm−1) intensities (ID/IG) and electronic conductivity of these materials show strong dependence on the amount of surfactant coverage. Remarkably, cell prepared with carbon-coated LiFePO4 synthesized using 0.25 M solution of LA showed a very large specific capacity approaching the theoretical limit of 170 mAh/g, in stark contrast to the specific capacity of cell consisting of pure of LiFePO4 (∼75 mAh/g) measured at the same C/2 discharge rate.

Type
Articles
Copyright
Copyright © Materials Research Society 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Padhi, A.K., Nanjundaswamy, K.S., and Goodenough, J.B.: Phospho-olivines as positive-electrode materials for rechargeable lithium batteries. J. Electrochem. Soc. 144, 1188 (1997).Google Scholar
2.Terada, N., Yanagi, T., Arai, S., Yoshikawa, M., Ohta, K., Nakajima, N., and Arai, N.: Development of lithium batteries for energy storage and EV applications. J. Power Sources 100, 80 (2001).CrossRefGoogle Scholar
3.Striebel, K.A., Guerfi, A., Shim, J., Armand, M., Gauthier, M., and Zaghib, K.: LiFePO4/gel/natural graphite cells for the BATT program. J. Power Sources 119121, 951 (2003).CrossRefGoogle Scholar
4.Prosini, P.P., Zane, D., and Pasquali, M.: Improved electrochemical performance of a LiFePO4-based composite cathode. Electrochim. Acta 46, 3517 (2001).Google Scholar
5.Molenda, J., Stoklosa, A., and Bak, T.: Modification in the electronic structure of cobalt bronze LixCoO2 and the resulting electrochemical properties. Solid State Ion. 36, 53 (1989).CrossRefGoogle Scholar
6.Shimakawas, Y., Numata, T., and Tabuchi, J.: Verwey-type transition and magnetic properties of the LiMn2O4 spinels. J. Solid State Chem. 131, 138 (1997).Google Scholar
7.Chung, S.Y., Bloking, J.T., and Chiang, Y-M.: Electronically conductive phosphor-olivines as lithium storage electrodes. Nat. Mater. 1, 123 (2002).CrossRefGoogle ScholarPubMed
8.Barker, J., Saidi, M.Y., and Swoyer, J.L.: Lithium iron (II) phosphor-olivines prepared by a novel carbothermal reduction method. Electrochem. Solid-State Lett. 6, A53 (2003).CrossRefGoogle Scholar
9.Doeff, M.M., Hu, Y., McLarnon, F., and Kosteckl, R.: Effect of surface carbon structure on the electrochemical performance of LiFePO4. Electrochem. Solid-State Lett. 6, A207 (2003).CrossRefGoogle Scholar
10.Gabrisch, H., Wilcox, J.D., and Doeff, M.M.: Carbon surface layers on a high-rate LiFePO4. Electrochem. Solid-State Lett. 9, A360 (2006).CrossRefGoogle Scholar
11.Croce, F., Epifanio, A.D., Hassoun, J., Deptula, A., Olczac, T., and Scrosati, B.: A novel concept for the synthesis of an improved LiFePO4 lithium battery cathode. Electrochem. Solid-State Lett. 5, A47 (2002).Google Scholar
12.Wang, G.X., Yang, L., Chen, Y., Wang, J.Z., Bewlay, S., and Liu, H.K.: An investigation of polypyrrole-LiFePO4 composite cathode materials for lithium-ion batteries. Electrochim. Acta 50, 4649 (2005).CrossRefGoogle Scholar
13.Wang, G.X., Bewlay, S.L., Konstantinov, K., Liu, H.K., Dou, S.X., and Ahn, J-H.: Physical and electrochemical properties of doped lithium iron phosphate electrodes. Electrochim. Acta 50, 443 (2004); Yet-Ming Chiang, Anthony E. Pullen, Nonglak Meethong. US Patent Application 20070292747, December 20, 2007.Google Scholar
14.Liao, X-Z., Ma, Z-F., He, Y-S., Zhang, X-M., Wang, L., and Jiang, Y.: Electrochemical behavior of LiFePO4/C cathode material for rechargeable lithium batteries. J. Electrochem. Soc. 152, A1969 (2005).CrossRefGoogle Scholar
15.Dominko, R., Goupil, J.M., Bele, M., Gaberseek, M., Remskar, M., Hanzel, D., and Jamnik, J.: Impact of LiFePO4/C composites porosity on their electrochemical performance. J. Electrochem. Soc. 152, A858 (2005).CrossRefGoogle Scholar
16.Wang, G.X., Yang, L., Bewlay, S.L., Chen, Y., Liu, H.K., and Ahn, J.H.: Electrochemical properties of carbon coated LiFePO4 cathode materials. J. Power Sources 146, 521 (2005); Michel Armand, John B. Goodenough, Akshaya Padhi, Kirakodu Nanjundaswamy, Christian Masquelier. US Patent Application 20050003274, January 6, 2005.CrossRefGoogle Scholar
17.Takahashi, M., Tobishima, S., Takei, K., and Sakurai, Y.: Characterization of LiFePO4 as the cathode material for rechargeable lithium batteries. J. Power Sources 9798, 508 (2001).CrossRefGoogle Scholar
18.Arnold, G., Garche, J., Hemmer, R., Strobele, S., Vogler, C., and Wohlfahrt-Mehrens, M.: Fine-particle lithium iron phosphate LiFePO synthesized by a new low-cost aqueous precipitation technique. J. Power Sources 119121, 247 (2003).CrossRefGoogle Scholar
19.Spong, A.D., Vitins, G., and Owen, J.R.: A solution-precursor synthesis of carbon-coated LiFePO4 for Li-ion cells. J. Electrochem. Soc. 152, A2376 (2005).CrossRefGoogle Scholar
20.Hu, Y., Doeff, M.M., Kostecki, R., and Finones, R.: Electrochemical performance of sol-gel synthesized LiFePO4 in lithium batteries. J. Electrochem. Soc. 151, A1279 (2004).Google Scholar
21.Yamada, A., Chung, S-Y., and Hinokuma, K.: Optimized LiFePO4 for lithium battery cathodes. J. Electrochem. Soc. 148, A224 (2001).CrossRefGoogle Scholar
22.Chung, S.Y. and Chiang, Y.M.: Microscale measurements of the electrical conductivity of doped LiFePO4. Electrochem. Solid-State Lett. 6, A278 (2003).CrossRefGoogle Scholar
23.Subramanya Herle, P., Ellis, B., Coombs, N., and Nazar, L.F.: Nano-network electronic conduction in rion and nickel olivine phosphates. Nat. Mater. 3, 147 (2004).Google Scholar
24.Ravet, N., Besner, S., Simoneau, M., Vall′ee, A., Armand, M., and Magnan, J-F.: Hydro-Qu′ebec, Canadian Patent # CA2270771, 1999, 2, 270, 771.Google Scholar
25.Ravet, N., Goodenough, J.B., Besner, S., Simoneau, M., Hovington, P., and Armand, M.: Improved iron based cathode materials. Abstract 127, The 196th Electrochemical Society and the Electrochemical Society of Japan Meeting Abstracts, Vol. 99–102, Honolulu, HI, October 17–22, 1999.Google Scholar
26.Delacourt, C., Poizot, P., Levasseur, S., and Masquelier, C.: Size effects on carbon-free LiFePO4 powders—The key to superior energy density. Electrochem. Solid-State Lett. 9, A352 (2006).Google Scholar
27.Delacourt, C., Poizot, P., Morcrette, M., Tarascon, J-M., and Masquelier, C.: One-step low-temperature route for the preparation of electrochemically active LiMnPO4 powders. Chem. Mater. 16, 93 (2004).CrossRefGoogle Scholar
28.Kim, D-H. and Kim, J.: Synthesis of LiFePO4 nanoparticles in polyol medium and their electrochemical properties. Electrochem. Solid-State Lett. 9, A439 (2006).Google Scholar
29.Dominko, R., Bele, M., Gaberscek, M., Remskar, M., Hanzel, D., Goupil, J.M., Pejovnik, S., and Jamnik, J.: Porous olivine composites synthesized by sol-gel technique. J. Power Sources 153, 274 (2006).CrossRefGoogle Scholar
30.Yang, J.S. and Xu, J.J.: Synthesis and characterization of carbon-coated lithium transitional metal phosphates LiMPO4 (M = Fe, Mn, Co, Ni) prepared via a nonaqueous sol-gel route. J. Electrochem. Soc. 153, A716 (2006).CrossRefGoogle Scholar
31.Sanchez, M.A.E., Brito, G.E.S., Fantini, M.C.A., Goya, G.F., and Matos, J.R.: Synthesis and characterization of LiFePO4 prepared by sol-gel technique. Solid State Ion. 177, 497 (2006).Google Scholar
32.Guo, Z.P., Liu, H., Bewlay, S., Liu, H.K., and Dou, S.X.: A new synthetic method for preparing LiFePO4 with enhanced electrochemical performance. J. New Mater. Electrochem. Syst. 6, 259 (2003).Google Scholar
33.Choi, D. and Kumta, P.N.: Surfactant based sol-gel approach to nanostructured LiFePO4 for high rate Li-ion batteries. J. Power Sources 163, 1064 (2007).CrossRefGoogle Scholar
34.Salah, A.A., Mauger, A., Julien, C.M., and Gendron, F.: Nano-sized impurity phases in relation to the mode of preparation of LiFePO4. Mater. Sci. Eng., B 129, 232 (2006).CrossRefGoogle Scholar
35.Xia, Y., Yoshio, M., and Noguchi, H.: Improved electrochemical performance of LiFePO4 by increasing its specific surface area. Electrochim. Acta 52, 240 (2006).CrossRefGoogle Scholar
36.Rho, Y., Nazar, L.F., Perry, L., and Ryan, D.: Surface chemistry of LiFePO4 studied by Mossbauer and X-ray photoelectron spectroscopy and its effect on electrochemical properties. J. Electrochem. Soc. 154, A283 (2007).Google Scholar
37.Kim, C.W., Park, J.S., and Lee, K.S.: Effect of Fe2P on the electron conductivity and electrochemical performance of LiFePO4 synthesized by mechanical alloying using Fe3+ raw material. J. Power Sources 163, 144 (2006).Google Scholar
38.Peters, A., Kortes, C., Hesse, D., Zakharov, N., and Janek, J.: Ionic conductivity and activation energy for oxygen ion transport in superlattices -The multilayer system CSZ (ZrO2 + CaO)/Al2O3.Solid State Ion. 178, 67 (2007).Google Scholar
39.Shi, S., Zhang, H., Ke, X., Ouyang, C., Lei, M., and Chen, L.: First principles study of lattice dynamics of LiFePO4. Phys. Lett. A 373, 4096 (2009).Google Scholar
40.Song, S.W., Reade, R.P., Kostecki, R., and Striebel, K.A.: Electrochemical studies of the LiFePO4 thin films prepared with pulsed laser deposition. J. Electrochem. Soc. 153, A12 (2006).CrossRefGoogle Scholar
41.Chen, G., Song, X., and Richardson, T.J.: Electron microscopy study of the LiFePO4 to FePO4 phase transition. Electrochem. Solid-State Lett. 9, A295 (2006).CrossRefGoogle Scholar
42.Srinivasan, V. and Newman, J.: Discharge model for the lithium iron-phosphate electrode. J. Electrochem. Soc. 151, A1517 (2004).CrossRefGoogle Scholar
43.Prosini, P.P., Lisi, M., Zane, D., and Pasquali, M.: Determination of the chemical diffusion coefficient of lithium in LiFePO4. Solid State Ion. 148, 45 (2002).CrossRefGoogle Scholar
44.Franger, S., Lecras, F., Bourbon, C., and Rouault, H.: LiFePO4 synthesis routes for enhanced electrochemical performance. Electrochem. Solid-State Lett. 5, A231 (2002).Google Scholar
45.Wang, C.W., Sastry, A.M., Striebel, K.A., and Zaghib, K.: Extraction of layerwise conductivities in carbon-enhanced multilayered LiFePO4 cathodes. J. Electrochem. Soc. 152, A1001 (2005).CrossRefGoogle Scholar
46.Chen, Y.H., Wang, C.W., Zhang, X., and Sastry, A.M.: Porous cathode optimization for lithium cells: Ionic and electronic conductivity, capacity and selection of materials. J. Power Sources 195, 2851 (2010).Google Scholar