Hostname: page-component-745bb68f8f-kw2vx Total loading time: 0 Render date: 2025-01-24T13:12:42.611Z Has data issue: false hasContentIssue false

Nanoscale liquid phase epitaxy between Si and Au nanoparticles

Published online by Cambridge University Press:  31 January 2011

Yutaka Wakayama
Affiliation:
Tanaka Solid Junction Project, ERATO, Japan Science and Research Corporation, 1–1–1 Fukuura, Kanazawa-ku, Yokohama 236, Japan
Haruko Fujinuma
Affiliation:
Tanaka Solid Junction Project, ERATO, Japan Science and Research Corporation, 1–1–1 Fukuura, Kanazawa-ku, Yokohama 236, Japan
Shun-ichiro Tanaka
Affiliation:
Tanaka Solid Junction Project, ERATO, Japan Science and Research Corporation, 1–1–1 Fukuura, Kanazawa-ku, Yokohama 236, Japan
Get access

Abstract

A self-assembly technique was used for fabrication of a Si/metal interface in nanometer scale. Fine particles of gold of nanometer-order diameter were generated by a gas-phase condensation method and deposited on a Si substrate. Through a heat treatment and a cooling process, a nanoscopic Si–Au composite structure was formed on the surface of the Si substrate. Then, surface diffusing Si atoms played an important role for fabrication of the Si–Au structure which were epitaxially grown projecting onto the substrate. Furthermore, the Si/Au interface was atomically flat with no mixed-layer formation, and the Au nanoparticles also had the same crystal orientation as that of the Si dots in spite of a large lattice constant mismatch between them. This structure was considered to be fabricated as a result of minimization of the total surface and interface energy of the Si/Au system.

Type
Articles
Copyright
Copyright © Materials Research Society 1998

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Spears, D. L. and Smith, H., Electron. Lett. 8, 102 (1972).CrossRefGoogle Scholar
2.Ogawa, T., Sekiguchi, A., and Yoshizawa, N., Jpn. J. Appl. Phys. 35, 6360 (1996).CrossRefGoogle Scholar
3.Fukuda, M., Endo, N., Tsuyuzaki, H., Suzuki, M., and Deguchi, K., Jpn. J. Appl. Phys. 35, 6458 (1996).CrossRefGoogle Scholar
4.Arakawa, Y. and Sakaki, H., Appl. Phys. Lett. 40, 939 (1982).CrossRefGoogle Scholar
5.Kasai, S., Hashizume, T., and Hasegawa, H., Jpn. J. Appl. Phys. 35, 6652 (1996).CrossRefGoogle Scholar
6.Hiramoto, T., Ishikuro, H., Saito, K., Fujii, T., Saraya, T., Hashiguchi, G., and Ikoma, T., Jpn. J. Appl. Phys. 35, 6664 (1996).CrossRefGoogle Scholar
7.Sugimura, H. and Nakagiri, N., Appl. Phys. Lett. 66, 1430 (1995).CrossRefGoogle Scholar
8.Kragler, K., Gunther, E., Leuschner, R., Falk, G., H. Von. Seggern, and Saemann-Ishenenko, G., J. Vac. Sci. Technol. B 14, 1327 (1996).CrossRefGoogle Scholar
9.Hu, J., Carpick, R. W., Salmeron, M., and Xiao, X-D., J. Vac. Sci. Technol. B 14, 1341 (1996).CrossRefGoogle Scholar
10.Servat, J., Gorostiza, P., Sanz, F., Murano, F. P., Barniol, N., Abadal, G., and Aymerich, X., J. Vac. Sci. Technol. A 14, 1208 (1996).CrossRefGoogle Scholar
11.Oura, K., Naitoh, M., Yamane, J., and Shoji, F., Surf. Sci. 230, L151 (1990).CrossRefGoogle Scholar
12.Nabetani, Y., Ishikawa, T., Noda, S., and Sasaki, A., J. Appl. Phys. 76, 347 (1994).CrossRefGoogle Scholar
13.Welser, R. E. and Guido, L. J., Appl. Phys. Lett. 68, 912 (1996).CrossRefGoogle Scholar
14.Tersoff, J., Teichert, C., and Lagally, M. G., Phys. Rev. Lett. 76, 1675 (1996).CrossRefGoogle Scholar
15.Morinaga, H., Futatsuki, T., Ohmi, T., Fuchita, E., Oda, M., and Hayashi, C., J. Electrochem. Soc. 143, 966 (1995).CrossRefGoogle Scholar
16.Sinniah, K., Sherman, M. G., Lewis, L. B., Weinberg, W. H., Yates, J. T., Jr., and Janda, K. C., J. Chem. Phys. 92, 5700 (1990).CrossRefGoogle Scholar
17.Sakai, A., Ono, H., Ishida, K., Niino, T., and Tatsumi, T., Jpn. J. Appl. Phys. 30, L941 (1991).CrossRefGoogle Scholar
18.Okuno, K., Itoh, T., Iwami, M., and Hiraki, A., Solid State Commun. 34, 493 (1980).CrossRefGoogle Scholar
19.Hiraki, A., J. Electrochem. Soc. 27, 2662 (1980).CrossRefGoogle Scholar
20.Hansen, M. and Anderko, , Constitution of Binary Alloys (Genium Publishing Corporation, New York, 1991).Google Scholar
21.Samara, D., Williamson, J. R., Shih, C. K., and Banerjee, S. K., J. Vac. Sci. Technol. B 14, 1344 (1996).CrossRefGoogle Scholar
22.Kawasaki, K., Uejima, K., and Tsutsumi, K., Jpn. J. Appl. Phys. 35, 6689 (1996).CrossRefGoogle Scholar
23.Iijima, S. and Ichihashi, T., Jpn. J. Appl. Phys. 24, L125 (1985).CrossRefGoogle Scholar
24.Ajayan, P. M. and Iijima, S., J. Colloid Interface Sci. 147, 281 (1991).CrossRefGoogle Scholar
25.Kizuka, T., Tsuzuki, Y., Kumazawa, K., and Tanaka, N., Proceeding of JIMIS-8, 415 (1996).Google Scholar