Hostname: page-component-745bb68f8f-5r2nc Total loading time: 0 Render date: 2025-01-10T04:20:26.069Z Has data issue: false hasContentIssue false

Nanomechanical properties of energetically treated polyethylene surfaces

Published online by Cambridge University Press:  31 January 2011

C. Klapperich
Affiliation:
Department of Mechanical Engineering, University of California, Berkeley, California 94720
L. Pruitt
Affiliation:
Department of Mechanical Engineering and Department of Bioengineering, University of California, Berkeley, California 94720
K. Komvopoulos
Affiliation:
Department of Mechanical Engineering, University of California, Berkeley, California 94720
Get access

Abstract

The effects of energetic treatments, crosslinking, and plasma modification on the surface mechanical properties and deformation behavior of ultrahigh molecular weight polyethylene (UHMWPE) were examined in light of nanoindentation experiments performed with a surface force microscope. Samples of UHMWPE were subjected to relatively high-dose gamma irradiation, oxygen ion implantation, and argon ion beam treatment. A range of crosslinking was achieved by varying the radiation dose. In addition, low-temperature plasma treatment with hexamethyldisiloxane/O2 and C3F6 was investigated for comparison. The surface mechanical properties of the treated UHMWPE samples are compared with those of untreated UHMWPE samples used as controls. Surface adhesion measurements obtained from the nanoindentation material responses are also discussed in terms of important treatment parameters. Results demonstrate that high-dose oxygen ion implantation, argon ion beam treatment, and low-temperature C3F6 plasma modification are effective treatments for enhancing the surface mechanical properties of UHMWPE.

Type
Articles
Copyright
Copyright © Materials Research Society 2002

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.McKellop, H., Shen, F.W., Lu, B., Campbell, P., and R. Salovey, J. Orthopaedic Res. 17, 157 (1999).CrossRefGoogle Scholar
2.Muratoglu, O.K., Bragdon, C.R., O’Connor, D.O., Jasty, M., Harris, W.H., Gul, R., and McGarry, F., Biomaterials 20, 1463 (1999).CrossRefGoogle Scholar
3.Liu, W., Yang, S., Li, C., and Sun, Y., Thin Solid Films 323, 158 (1998).CrossRefGoogle Scholar
4.Rao, G.R., Lee, E.I., Bhattacharya, R., and McCormick, A.W., J. Mater. Res. 10, 190 (1995).CrossRefGoogle Scholar
5.Lee, E.H., Rao, G.R., Lewis, M.B., and Mansur, L.K., J. Mater. Res. 9, 1043 (1994).CrossRefGoogle Scholar
6.Klapperich, C., Komvopoulos, K., and Pruitt, L., J. Tribol. 121, 394 (1999).CrossRefGoogle Scholar
7.Edidin, A.A., Pruitt, L., Jewett, C.W., Crane, D.J., Roberts, D., and Kurtz, S.M., J. Arthroplasty 14, 616 (1999).CrossRefGoogle Scholar
8.Baker, D.A., Hastings, R.S., and Pruitt, L., J. Biomedical Mater. Res. 46, 573 (1999).3.0.CO;2-A>CrossRefGoogle Scholar
9.Niederberger, S., Gracias, D.H., Komvopoulos, K., and Somorjai, G.A., J. Appl. Phys. 87, 3143 (2000).CrossRefGoogle Scholar
10.Mailhot, B., Komvopoulos, K., Ward, B., Tian, Y., and Somorjai, G.A., J. Appl. Phys. 89, 5712 (2001).CrossRefGoogle Scholar
11.Klapperich, C., Komvopoulos, K., and Pruitt, L., J. Tribol. 123, 624 (2001).CrossRefGoogle Scholar
12.Sneddon, I.N., Int. J. Eng. Sci. 3, 47 (1965).CrossRefGoogle Scholar
13.Oliver, G.M. and Pharr, G.M., J. Mater. Res. 7, 1564 (1992).CrossRefGoogle Scholar
14.Shinde, A. and Salovey, R., J. Polym. Sci. Pol. Phys. 23, 1681 (1985).CrossRefGoogle Scholar
15.Fisher, J., Hailey, J.L., Chan, K.L., Shaw, D., and Stone, M., Transactions 41st Annual Meeting Orthopaedic Research Society, Orlando, FL, 1995, (ORS, Rosemont, IL), p. 120.Google Scholar
16.Ries, M.D., Weaver, K., Rose, R.M., Gunther, J., Sauer, W., and Beals, N., Clinical Orthopaedics Relat. Res. 333, 87 (1996).Google Scholar
17.Goldman, M., Lee, M., Gronsky, R., and Pruitt, L., J. Biomed. Mater. Res. 37, 43 (1997).3.0.CO;2-J>CrossRefGoogle Scholar
18.Premnath, V., Harris, W.H., Jasty, M., and Merrill, E.W., Biomaterials 17, 1741 (1996).CrossRefGoogle Scholar
19.Dong, H. and Bell, T., Surf. Coat. Technol. 111, 29 (1999).CrossRefGoogle Scholar
20.Giberson, R.C., J. Poly. Sci. A 2, 4965 (1964).Google Scholar
21. J.H. O’Donnell and Sangster, D.F., Principles of Radiation Chemistry (Elsevier, New York, 1970), p. 176.Google Scholar
22.Denaro, A.R. and Jayson, G.G., Fundamentals of Radiation Chemistry (Butterworth, London, United Kingdom, 1972), p. 204.Google Scholar
23.Ratner, B.D., Chilkoti, A., and Lopez, G.P., in Plasma Deposition, Treatment, and Etching of Polymers, edited by d’Agostino., R. (Academic Press, Boston, MA, 1990), pp. 469470.Google Scholar
24.Ratner, B.D., Hoffman, A.S., Schoen, F.J., and Lemons, J.E., Biomaterials Science: An Introduction to Materials in Medicine (Academic Press, San Diego, CA, 1996), pp. 105116.Google Scholar
25.Briscoe, B.J., in Physiochemical Aspects of Polymer Surfaces (Plenum, New York, 1983), pp. 387– 412.Google Scholar
26. E. Amitay-Sadovski, Ward, B., Somorjai, G.A., and K. Komvopoulos, J. Appl. Phys. 91, 375 (2002).Google Scholar
27. E. Amitay-Sadovski, Komvopoulos, K., Tian, Y., and Somorjai, G.A., Appl. Phys. Lett. (2002, in press).Google Scholar