Hostname: page-component-586b7cd67f-rdxmf Total loading time: 0 Render date: 2024-11-26T09:05:41.686Z Has data issue: false hasContentIssue false

Nanoindentation creep in polycarbonate and syndiotactic polystyrene

Published online by Cambridge University Press:  29 February 2012

Chien-Chao Huang
Affiliation:
Department of Materials Science and Engineering, National Tsing Hua University, Hsinchu 30013, Taiwan
Mao-Kuo Wei
Affiliation:
Department of Materials Science and Engineering, National Dong Hwa University, Hualien 97401, Taiwan
Julie P. Harmon
Affiliation:
Department of Chemistry, University of South Florida, Tampa, Florida 33620-5250
Sanboh Lee*
Affiliation:
Department of Materials Science and Engineering, National Tsing Hua University, Hsinchu 30013, Taiwan
*
a)Address all correspondence to this author. e-mail: [email protected]
Get access

Abstract

This study focuses on nanoindentation creep in polycarbonate (PC) and syndiotactic polystyrene (sPS) throughout the transient and steady-state regions. The viscoelastic Burgers model is used to explain transient creep data, while the power-law creep model is used to interpret steady-state creep data. The Newtonian shear viscosity of the Maxwell element and Young’s modulus of the Kelvin element are greater for the creep period than for the preload period, and an opposite trend is noted in the Newtonian shear viscosity of the Kelvin element and Young’s modulus of the Maxwell element. The fact that the Young’s moduli of Maxwell and Kelvin elements in the creep period are different from those in the preload period implies that a stress-induced mesomorphic structure forms or that crystallization occurs in nanoindentation creep. While the strain rate increases with decreasing preload period, the stress exponent factor is almost the same for all preload periods.

Type
Articles
Copyright
Copyright © Materials Research Society 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Oliver, W.C. and Pharr, G.M.: An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments. J. Mater. Res. 7(6), 1564 (1992).CrossRefGoogle Scholar
LaFontaine, W.R., Yost, B., Black, R.D., and Li, C.Y.: Indentation load relaxation experiments with indentation depth in the submicron range. J. Mater. Res. 5, 2100 (1990).CrossRefGoogle Scholar
Syed, S.A. and Pethica, J.B.: Nanoindentation creep of single-crystal tungsten and gallium arsenide. Philos. Mag. A 76, 1105 (1997).CrossRefGoogle Scholar
Feng, G. and Ngan, A.H.W.: The effects of creep on elastic modulus measurement using nanoindentation, in Fundamentals of Nanoindentation and Nanotribology II, edited by Baker, S.P., Cook, R.F., Corcoran, S.G., and Moody, N.R. (Mater. Res. Soc. Symp. Proc. 649, Warrendale, PA, 2001), Q7.1.Google Scholar
Li, H. and Ngan, A.H.W.: Size effects of nanoindentation creep. J. Mater. Res. 19, 513 (2004).CrossRefGoogle Scholar
Tang, B., Ngan, A.H.W., and Lu, W.W.: Viscoelastic effects during depth-sensing indentation of cortical bone tissues. Philos. Mag. 86(33–35), 5653 (2006).CrossRefGoogle Scholar
Jager, A., Lackner, R., and Eberhardsteiner, J.: Identification of viscoelastic properties by means of nanoindentation taking the real tip geometry into account. Meccanica 42(3), 293 (2007).CrossRefGoogle Scholar
Oyen, M.L.: Sensitivity of polymer nanoindentation creep measurements to experimental variables. Acta Mater. 55(11), 3633 (2007).CrossRefGoogle Scholar
Choi, S.T., Jeong, S.J., and Earmme, Y.Y.: Modified-creep experiment of an elastomer film on a rigid substrate using nanoindentation with a flat-ended cylindrical tip. Scr. Mater. 58(3), 199 (2008).CrossRefGoogle Scholar
Liu, C.K., Lee, S., Sung, L.P., and Nguyen, T.: Load-displacement relations for nanoindentation of viscoelastic materials. J. Appl. Phys. 100(3), 033503 (2006).CrossRefGoogle Scholar
Huang, C.C., Wei, M.K., and Lee, S.: Transient and steady-state nanoindentation creep of polymer materials. Int. J. Plast. 27, 1093 (2011).CrossRefGoogle Scholar
Briscoe, B.J., Fiori, L., and Pelillo, E.: Nano-indentation of polymeric surfaces. J. Phys. D: Appl. Phys. 31(19), 2395 (1998).CrossRefGoogle Scholar
Yang, S., Zhang, Y.W., and Zeng, K.: Analysis of nanoindentation creep for polymeric materials. J. Appl. Phys. 95(7), 3655 (2004).CrossRefGoogle Scholar
Tweedie, C.A. and Vliet, K.J.V.: Contact creep compliance of viscoelastic materials via nanoindentation. J. Mater. Res. 21(6), 1576 (2006).CrossRefGoogle Scholar
Goodall, R. and Clyne, T.W.: A critical appraisal of the extraction of creep parameters from nanoindentation data obtained at room temperature. Acta Mater. 54(20), 5489 (2006).CrossRefGoogle Scholar
Brostow, W. and Hagg Lobland, H.E.: Sliding wear, viscoelasticity, and brittleness of polymers. J. Mater. Res. 21(9), 2422 (2006).CrossRefGoogle Scholar
Mercier, J.R., Aklonis, J.J., Litt, M., and Tobolsky, A.V.: Viscoelastic behavior of the polycarbonate of bisphenol A. J. Appl. Polym. Sci. 9(2), 447 (1965).CrossRefGoogle Scholar
Wu, M-S.S.: Intrinsic birefringence of amorphous poly(bisphenol-A carbonate). J. Appl. Polym. Sci. 32, 3263 (2006).CrossRefGoogle Scholar
Yan, R.J., Ajji, A., Shinozaki, D.M., and Dumoulin, M.M.: Uniaxial drawing behavior of syndiotactic polystyrene. Polymer 41, 1077 (2000).CrossRefGoogle Scholar
Strojny, A., Xia, X., Tsou, A., and Gerberich, W.W.: Techniques and considerations for nanoindentation measurements of polymer thin film constitutive properties. J. Adhes. Sci. Technol. 12(12), 1299 (1998).CrossRefGoogle Scholar
D’Aniello, C., Rizzo, P., and Guerra, G.: Polymorphism and mechanical properties of syndiotactic polystyrene films. Polymer 46, 11435 (2005).CrossRefGoogle Scholar