Hostname: page-component-745bb68f8f-g4j75 Total loading time: 0 Render date: 2025-01-24T13:03:37.108Z Has data issue: false hasContentIssue false

Multitechnique surface spectroscopic studies of plasma-modified polymers II: H2O/Ar plasma-modified polymethylmethacrylate/polymethacrylic acid copolymers

Published online by Cambridge University Press:  31 January 2011

Thomas J. Hook
Affiliation:
Department of Chemistry, State University of New York at Buffalo, Buffalo, New York 14214
Joseph A. Gardella Jr.
Affiliation:
Department of Chemistry, State University of New York at Buffalo, Buffalo, New York 14214
Lawrence Salvati Jr.
Affiliation:
Perkin-Elmer Physical Electronics Laboratories, 5 Progress Street, Edison, New Jersey 08820
Get access

Abstract

Results from the x-ray photoelectron spectroscopy (XPS or ESCA), ion scattering spectroscopy (ISS or LEIS), and Fourier transform infrared spectrometry (FTIR) analyses are presented for unmodified and modified poly (methylmethacrylate)/poly (methacrylic acid) (PMMA/PMAA) copolymer films. Analyses of the unmodified PMMA/PMAA copolymer series, via ESCA, ISS, and FTIR, established the surface composition and functionality of the PMMA/PMAA copolymers before the H2O/Ar rf-plasma treatment was employed. The ESCA, ISS, and FTIR analysis of these modified PMMA/PMAA copolymers show that surface modification over a limited depth (50–200 Å) has occurred. The composition, bonding, and functionality changes of the surfaces are discussed. A two-step modification mechanism (surface reduction of the PMMA/PMAA copolymer followed by H2O adsorption) is proposed to interpret the spectroscopic results.

Type
Articles
Copyright
Copyright © Materials Research Society 1987

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Hook, T. J., R. L., Schmitt, Gardella, J. A. Jr., Salvati, L. Jr., and Chin, R. L., Anal. Chem. 58(7), 1285 (1986).CrossRefGoogle Scholar
2Hercules, D. M., Anal. Chem. A 50, 739 (1978).Google Scholar
3Gardella, J. A. Jr., and Hercules, D. M., Anal. Chem. 52, 226 (1980).CrossRefGoogle Scholar
4Gardella, J. A. Jr., and Hercules, D. M., Anal. Chem. 53, 1879 (1981).CrossRefGoogle Scholar
5Hook, T. J., Gardella, J. A. Jr., and Salvati, L. Jr., J. Mater. Res. 2, 117 (1987).CrossRefGoogle Scholar
6Gregonis, D. E. and Andrade, J. D., in Surface and Interfacial Aspects of Biomedical Polymers, Surface Chemistry and Physics, edited by Andrade, J. D. (Plenum, New York, 1985), Vol. 1, Chap. 3, p. 43.CrossRefGoogle Scholar
7Roberts, R. F., Allara, D. L., Pryde, C. A., Buchanan, D. N. E., and Hobbins, N. D., SIA Surf. Inter. Anal. 2, 5 (1980).CrossRefGoogle Scholar
8Mirabella, F. M. Jr., J. Polym. Sci. Polym. Phys. 23, 861 (1985).CrossRefGoogle Scholar
9Bellamy, L. J., The Infrared Spectra of Complex Molecules (Chapman and Hall, London, 1975), 3rd ed., Vol. 1., p. 203.CrossRefGoogle Scholar
10Silverstein, R. M., Bassler, G. C., and Morrill, T. C., Spectrometric Identification of Organic Compounds (Wiley, New York, 1981), 4th ed., p. 105.Google Scholar