Hostname: page-component-586b7cd67f-g8jcs Total loading time: 0 Render date: 2024-11-27T01:38:38.730Z Has data issue: false hasContentIssue false

Multiphase microstructure evolution model including dislocation plasticity

Published online by Cambridge University Press:  31 January 2011

Fabrizio Cleri
Affiliation:
Ente Nuove Tecnologie, Energia e Ambiente, Divisione Materiali, Centro Ricerche Casaccia, CP 2400, I-00100 Roma, Italy
Gregorio D'Agostino
Affiliation:
Ente Nuove Tecnologie, Energia e Ambiente, Divisione Materiali, Centro Ricerche Casaccia, CP 2400, I-00100 Roma, Italy
Get access

Abstract

We present the recent extensions of our stochastic microstructure evolution model including multiphase domain evolution and dislocation plasticity. The model was implemented by means of numerical simulations based on the velocity Monte Carlo algorithm. It describes the evolution of a two-dimensional microstructure by tracking the motion of triple junctions, i.e., the vertices where three grain boundaries (GBs) meet. GBs can be modeled as straight, curved, or discretized segments; the misorientation dependence of both grain-boundary energies and mobilities can be included to represent different textures.

Type
Articles
Copyright
Copyright © Materials Research Society 2002

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Needleman, A. and Rice, J.R., Acta Met. 28, 1315 (1980).Google Scholar
2.Cocks, A.C.F. and Gill, S.P., Acta Mater. 44, 4765 and 4777 (1996).Google Scholar
3.Cocks, A.C.F. and Gill, S.P., inAdvances in Applied Mechanics, (Academic Press, New York, 1999), Vol. 36, p. 81.Google Scholar
4.Cleri, F., Physica A 282, 339 (2000).Google Scholar
5.Moldovan, D., Wolf, D., and Phillpot, S.R., Acta Mater. 49, 3521 (2001).Google Scholar
6.Read, W.T. and Shockley, W., Phys. Rev. 78, 275 (1950).CrossRefGoogle Scholar
7.Humpreys, F.J., Scripta Met. Mat. 27, 1557 (1992).CrossRefGoogle Scholar
8.Humpreys, F.J., Acta Mat. 45, 4231 (1997); Y. Huang and F.J. Humphreys, Acta Mat. 48, 2017 (2000).Google Scholar
9.Miodownik, M.A. and Holm, E.A., inRecrystallization and Grain Growth, edited by Gottstein, G. and Molodov, D.A. (Springer-Verlag, Berlin, 2001), p. 309.Google Scholar
10.Kazaryan, A., Wang, Y, Dregia, S.A. and Patton, B.R.Phys. Rev. B 63, 184102 (2001).CrossRefGoogle Scholar
11.Brambilla, L., Colombo, L., Rosato, V., and Cleri, F., Appl. Phys. Lett. 77, 2337 (2000).Google Scholar
12.Molodov, D.A., inRecrystallization and Grain Growth, edited by Gottstein, G. and Molodov, D.A. (Springer-Verlag, Berlin, 2001), p. 21.Google Scholar
13.Wu, D.T., inSolid State Physics, Vol. 50, (Academic Press, New York, 1989), p. 37.Google Scholar
14.Kolmogorov, A.N., Izv. Akad. Nauk. USSR Ser-Matemat. 1, 355 (1937); W.A. Johnson and R.F. Mehl, Trans. Metall. Soc. AIME 135, 416 (1939); M. Avrami, J. Chem. Phys. 7, 1103 (1939).Google Scholar
15.Haasen, P., inPhysical Metallurgy, (Cambridge University Press, Cambridge, 1978), p. 271.Google Scholar
16.Sedlácek, R., Kratochvĺ, J., and Blum, W., Phys. Status Solidi A 186, 1 (2001).3.0.CO;2-R>CrossRefGoogle Scholar