Hostname: page-component-586b7cd67f-rcrh6 Total loading time: 0 Render date: 2024-11-27T01:58:42.019Z Has data issue: false hasContentIssue false

A multinuclear MAS NMR study of the short-range structure of fluorophosphate glass

Published online by Cambridge University Press:  31 January 2011

R.K. Brow
Affiliation:
Glass and Ceramics Science & Technology Division, Sandia National Laboratories, Albuquerque, New Mexico 87185
Z.A. Osborne*
Affiliation:
Glass and Ceramics Science & Technology Division, Sandia National Laboratories, Albuquerque, New Mexico 87185
R.J. Kirkpatrick
Affiliation:
Department of Geology, University of Illinois at Urbana–Champaign, Urbana, Illinois 61801
*
a)Current address: Arizona Materials Lab, Tucson, Arizona.
Get access

Abstract

We have examined the bonding arrangements in Na–P–O–F and Na–Al–P–O–F glasses using 19F, 27Al, and 31P solid-state magic angle spinning nuclear magnetic resonance (MAS NMR) spectroscopy. For the Al-free series of glasses, the 19F NMR spectra are dominated by peaks near +90 ppm, representative of F terminating P-chains. The formation of these bonds has little effect on the 31P chemical shifts, indicating that F preferentially replaces bridging oxygen on the phosphate tetrahedra, consistent with previous NMR studies of crystalline fluorophosphates and other spectroscopic studies of fluorophosphate glass. For the Na–Al–P–O–F glasses, 27Al NMR detects only octahedral Al-sites, the 19F NMR spectra include a second peak near −12 ppm due to F bonded to Al, and the 31P NMR spectra contain signals due to Q1-sites with one or more Al next-nearest neighbors. The relative intensity of the two 19F peaks correlates well with previous spectroscopic studies and shows that a greater fraction of F–P bonds forms when the base glass is remelted in NH4HF2.

Type
Articles
Copyright
Copyright © Materials Research Society 1992

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Stevic, S., Videau, J-J., and Portier, J., Revue de chimie Minerale 15, 529 (1978).Google Scholar
2.Stevic, S., Aleksic, R., and Backovic, N., J. Am. Ceram. Soc. 70, C264 (1987).CrossRefGoogle Scholar
3.Videau, J-J., Portier, J., and Piriou, B., J. Non-Cryst. Solids 48, 385 (1982).CrossRefGoogle Scholar
4.Brow, R. K., Tallant, D. R., Osborne, Z. A., Yang, Y., and Day, D. E., Phys. Chem. Glass 32, 188 (1991).Google Scholar
5.Osborne, Z. A., Brow, R. K., and Tallant, D. R., Properties and Characteristics of Optical Glass II (Proc. SPIE Int. Symp. Optical and Optoelectronic Appl. Sci. Eng., July, 1990), Vol. 1327, p. 203.Google Scholar
6.Brow, R. K., Kirkpatrick, R. J., and Turner, G. L., J. Am. Ceram. Soc. 73, 2293 (1990).CrossRefGoogle Scholar
7.Brow, R. K., Kirkpatrick, R. J., and Turner, G. L., J. Non-Cryst. Solids 116, 39 (1990).CrossRefGoogle Scholar
8.Bunker, B. C., Tallant, D. R., Balfe, C. A., Kirkpatrick, R. J., Turner, G. L., and Reidmeyer, M. R., J. Am. Ceram. Soc. 70, 675 (1987).CrossRefGoogle Scholar
9.Haubenreisser, U., Sternberg, U., and Grimmer, A-R., Molec. Physics 60, 151 (1987).CrossRefGoogle Scholar
10.Fletcher, J. P., Risbud, S. H., and Kirkpatrick, R. J., J. Mater. Res. 5, 835 (1990).CrossRefGoogle Scholar
11.Gurova, N. N., Vopilov, V. A., Buznik, V. M., and Urusovskaya, L. N., Fiz. Khim. Stekla 15, 687 (Russ.) (1989).Google Scholar
12.Kirkpatrick, R. J., Kinsey, R. A., Smith, K. A., Henderson, D. M., and Oldfield, E., Am. Mineral. 70, 106 (1985).Google Scholar
13.Lentz, D. and Seppelt, K., Z. Anorg. Allg. Chem. 460, 5 (1980).CrossRefGoogle Scholar
14.Tossell, J. A. and Lazzeretti, P., Chem. Phys. Lett. 140, 37 (1987).CrossRefGoogle Scholar
15.Grimmer, A. R. and Haubenreisser, U., Phys. Chem. Lett. 99, 487 (1983).CrossRefGoogle Scholar
16.Sears, R. E. J., J. Chem. Phys. 61, 4368 (1974).CrossRefGoogle Scholar