Hostname: page-component-745bb68f8f-mzp66 Total loading time: 0 Render date: 2025-01-11T03:14:38.114Z Has data issue: false hasContentIssue false

Morphological variations in flame-deposited diamond

Published online by Cambridge University Press:  03 March 2011

E.A. Frey
Affiliation:
Department of Mechanical Engineering, The Ohio State University, Columbus, Ohio 43210
A. Tamhane
Affiliation:
Department of Materials Science and Engineering, The Ohio State University, Columbus, Ohio 43210
J.H.D. Rebello
Affiliation:
Department of Mechanical Engineering, The Ohio State University, Columbus, Ohio 43210
S.A. Dregia
Affiliation:
Department of Materials Science and Engineering, The Ohio State University, Columbus, Ohio 43210
V.V. Subramaniam
Affiliation:
Department of Mechanical Engineering, The Ohio State University, Columbus, Ohio 43210
Get access

Abstract

An oxy-acetylene flame, impinging vertically upward on an Si(001) substrate, is systematically examined for morphological variations in the resulting diamond deposits. The flame is operated under near neutral (O2/C2H2 ratio near 1.0) conditions in the unconfined, open atmosphere. Singly twinned crystal morphologies in addition to the usual (001) faceted structures are observed and reported for the first time. Similar morphological variations are observed along the radial as well as the axial (vertical) coordinate directions in the flame. Large changes in morphology are observed for changes in vertical position as small as 50 μm.

Type
Articles
Copyright
Copyright © Materials Research Society 1994

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Hirose, Y. and Kondo, N., Program and Book of Abstracts, Japan Applied Physics 1988 Spring Meeting, March 29 (1988), p. 434.Google Scholar
2Hanssen, L. M., Carrington, W. A., Butler, J. E., and Snail, K. A., Mater. Lett. 7, 289 (1988).CrossRefGoogle Scholar
3Kosky, P. G. and McAtee, D. S., Mater. Lett. 8, 369 (1989).CrossRefGoogle Scholar
4Ravi, K. V., Koch, C. A., Hu, H. S., and Joshi, A., J. Mater. Res. 5, 2356 (1990).CrossRefGoogle Scholar
5Hirose, Y., Amanuma, S., and Komaki, K., J. Appl. Phys. 68, 6401 (1990).CrossRefGoogle Scholar
6Ravi, K. V. and Joshi, A., Appl. Phys. Lett. 58, 246 (1991).CrossRefGoogle Scholar
7Ravi, K. V., J. Mater. Res. 7, 384 (1992).CrossRefGoogle Scholar
8Frey, E. A., Rebello, J. H. D, and Subramaniam, V. V., Proceedings of the 5th International Conference on Surface Modification Technologies, University of Birmingham, United Kingdom, September (1991), pp. 343356.Google Scholar
9Frey, E. A., M. S. Thesis, The Ohio State University, Columbus, OH (1992).Google Scholar
10Stoner, B. R. and Glass, J. T., Appl. Phys. Lett. 60, 698 (1992).CrossRefGoogle Scholar
11Matsumoto, S., Sato, Y., Tsutsumi, M., and Setaka, N., J. Mater. Sci. 17, 3106 (1982).CrossRefGoogle Scholar
12Rebello, J. H. D., Straub, D. L., Subramaniam, V. V., Tan, E. K., Dregia, S. A., Preppernau, B. L., and Miller, T. A., Mater. & Manuf. Processes 6, 501 (1991).CrossRefGoogle Scholar
13Kamo, M., Sato, Y., Matsumoto, S., and Setaka, N., J. Cryst. Growth 62, 642 (1983).CrossRefGoogle Scholar
14Tamhane, A. and Dregia, S. A., unpublished research.Google Scholar
15Kobashi, K., Nishimura, K., Kawate, Y., and Horiuchi, T., Phys. Rev. B 38, 5067 (1988).CrossRefGoogle Scholar
16Chang, J. J., Mantei, T. D., Vuppuladhadium, R., and Jackson, H. E., J. Appl. Phys. 71, 2918 (1992).CrossRefGoogle Scholar
17Takeuchi, K. and Yoshida, T., J. Appl. Phys: 71, 2636 (1992).CrossRefGoogle Scholar
18Chang, J. J. and Mantei, T. D., J. Appl. Phys. 71, 5724 (1992).CrossRefGoogle Scholar
19Matsui, Y., Yabe, H., Sugimoto, T., and Hirose, Y., Diamond & Related Mater. 1, 19 (1991).CrossRefGoogle Scholar
20Gaydon, A. G. and Wolfhard, H. G., Flames: Their Structure, Radiation, and Temperature, 4th ed. (Chapman and Hall, London, 1979).Google Scholar
21Incropera, F. P. and Dewitt, D. P., Introduction to Heat Transfer, 2nd ed. (John Wiley & Sons, New York, 1990), p. 399.Google Scholar