Hostname: page-component-745bb68f8f-grxwn Total loading time: 0 Render date: 2025-01-11T05:35:51.713Z Has data issue: false hasContentIssue false

Morphological evolution of barium titanate synthesized in water in the presence of polymeric species

Published online by Cambridge University Press:  31 January 2011

Roger B. Bagwell
Affiliation:
Max-Planck-Institut für Metallforschung and Institut für Nichtmetallische Anorganische Materialien, Universität Stuttgart, Pulvermetallurgisches Laboratorium, Heisenbergstr. 5, 70569 Stuttgart, Germany
Jürgen Sindel
Affiliation:
Max-Planck-Institut für Metallforschung and Institut für Nichtmetallische Anorganische Materialien, Universität Stuttgart, Pulvermetallurgisches Laboratorium, Heisenbergstr. 5, 70569 Stuttgart, Germany
Wolfgang Sigmund
Affiliation:
Max-Planck-Institut für Metallforschung and Institut für Nichtmetallische Anorganische Materialien, Universität Stuttgart, Pulvermetallurgisches Laboratorium, Heisenbergstr. 5, 70569 Stuttgart, Germany
Get access

Abstract

The synthesis of barium titanate (BaTiO3) was investigated in water at 90 °C in the presence of polymeric additives. Homopolymers (polyacrylic acid) and block copolymers (polyethylene oxide-block-polymethacrylic acid) were added during synthesis to influence particle morphology and size distribution. The polymers affected the morphological evolution of the forming powder by adsorbing preferentially on specific planes. The polymeric species additionally slowed the formation of barium titanate. The barium concentration also changed the morphology, particle size, and other powder characteristics.

Type
Articles
Copyright
Copyright © Materials Research Society 1999

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Herbert, J. M., Ferroelectric Transducers and Sensors (Gordon and Breach Science Publishers, New York, 1982).Google Scholar
2.Slamovich, E.B. and Aksay, I. A., J. Am. Ceram. Soc. 79, 239 (1996).CrossRefGoogle Scholar
3.Chien, A.T., Speck, J.S., Lange, F. F., Daykin, A. C., and Levi, C. G., J. Mater. Res. 10, 1784 (1995).CrossRefGoogle Scholar
4.Eckert, J. O. Jr, Hung-Houston, C. C., Gersten, B.L., Lencka, M. M., and Riman, R. E., J. Am. Ceram. Soc. 79, 2929 (1996).CrossRefGoogle Scholar
5.Vivekanandan, R. and Kutty, T. R. N., Powder Technol. 57, 181 (1989).CrossRefGoogle Scholar
6.Hennings, D., Rosenstein, G., and Schreinemacher, H., J. Eur. Ceram. Soc. 8, 107 (1991).CrossRefGoogle Scholar
7.Potdar, H. S., Singh, P., Deshpande, S. B., Godbole, P. D., and Date, S. K., Mater. Lett. 10, 112 (1990).CrossRefGoogle Scholar
8.Alcock, J. R., Riley, F. L., D'Angeli, C., and Thomas, A. G., Br. Ceram. Trans. 90, 152 (1991).Google Scholar
9.Pfaff, G., J. Eur. Ceram. Soc. 8, 35 (1991).CrossRefGoogle Scholar
10.Osseo-Asare, K., Arriagada, F. J., and Adair, J.H., in Ceramic Powder Science II A, edited by Messing, G., Fuller, E., and Hausner, H. (The American Ceramic Society, Westerville, OH, 1988), p. 47.Google Scholar
11.Lencka, M. M. and Riman, R. E., Chem. Mater. 5, 61 (1993).CrossRefGoogle Scholar
12.Zhao, L., Chien, A. T., Lange, F. F., and Speck, J. S., J. Mater. Res. 11, 1325 (1996).CrossRefGoogle Scholar
13.Sarig, S., in Handbook of Crystal Growth, edited by Hurle, D. J. (Elsevier Science, Amsterdam, 1994), Vol. 2, p. 1217.Google Scholar
14.Davey, R. J., Black, S. N., Bromley, L. A., Cottier, D., Dobbs, B., and Rout, J. E., Nature 353, 549 (1991).CrossRefGoogle Scholar
15.Porter, M. R., Handbook of Surfactants, 2nd ed. (Blackie Academic and Professional, Glasgow, 1994).CrossRefGoogle Scholar
16.Foissy, A., El Attar, A., and LaMarche, J. M., J. Colloid Interface Sci. 96, 275 (1983).CrossRefGoogle Scholar
17.Motschmann, H., Stamm, M., and Toprakcioglu, Ch., Macromolecules 24, 3681 (1991).CrossRefGoogle Scholar
18.Orth, J., Meyer, W. H., Bellmann, C., and Wegner, G., Acta Polym. 48, 490 (1997).CrossRefGoogle Scholar
19.Bergström, L., Shinozaki, K., Tomiyama, H., and Mizutani, N., J. Am. Ceram. Soc. 80, 291 (1997).CrossRefGoogle Scholar
20.de Laat, A.W.M., de Bruijn, A. W., and van den Heuvel, G. L. T., Colloids Surf. A 82, 99 (1994).CrossRefGoogle Scholar
21.Shashidhar, J. R., Varner, R. A., and Condrate , Sr, in Ceramic Powder Science III, edited by Messing, G., Hirano, S., and Hausner, H. (The American Ceramic Society, Westerville, OH, 1990), p. 443.Google Scholar
22.Füredi-Milhofer, H. and Walton, A. G., in Dispersion of Powders in Liquids, 3rd ed., edited by Parfitt, G.D. (Applied Science Publishers, London, 1981), p. 203.Google Scholar
23.Marentette, J. M., Norwig, J., Stöckelmann, E., Meyer, W. H., and Wegner, G., Adv. Mater. 9 (8), 647651 (1997).CrossRefGoogle Scholar
24.Oner, M., Norwig, J., Meyer, W.H., and Wegner, G., Chem. Mater. 10 (2), 460463 (1998).CrossRefGoogle Scholar
25.Kirov, G.K., Vesselinov, I., and Cherneva, Z., Kristall Technik. 7, 497 (1972).CrossRefGoogle Scholar
26.Hartman, P., in Crystal Growth: An Introduction, edited by Hartman, P. (North Holland, Amsterdam, 1973), p. 367.Google Scholar
27.Farley, K.J., Dzombak, D. A., and Morel, François M. M., J. Colloid Interface Sci. 106, 226 (1985).CrossRefGoogle Scholar