Hostname: page-component-745bb68f8f-hvd4g Total loading time: 0 Render date: 2025-01-25T18:45:58.795Z Has data issue: false hasContentIssue false

Morphological control and photoluminescence of ZnS:Mn microstructure

Published online by Cambridge University Press:  03 March 2011

Xibin Yu*
Affiliation:
Department of Chemistry, Shanghai Normal University, Shanghai 200234, People’s Republic of China
Liangzhun Yang
Affiliation:
Department of Chemistry, Shanghai Normal University, Shanghai 200234, People’s Republic of China
Shiping Yang
Affiliation:
Department of Chemistry, Shanghai Normal University, Shanghai 200234, People’s Republic of China
Pingle Zhou
Affiliation:
Department of Chemistry, Shanghai Normal University, Shanghai 200234, People’s Republic of China
*
a) Address all correspondence to this author. e-mail: [email protected]
Get access

Abstract

ZnS:Mn cubes, microspheres, and nanospheres were prepared by the solvothermal synthesis approach. All samples possessed the same zinc blende structure. Surfactant cetyltrimethyl ammonium bromide (CTAB) exerts a major influence in directing the formation of these microstructures. By adding the CTAB into the reaction mixture, the cubes of the ZnS:Mn microstructures gradually dissolved to form larger microspheres. These microspheres are composed of an extensive growth of nanoparticles, which can be connected to each other. By increasing the concentrations of CTAB, these microspheres transformed into ZnS:Mn nanospheres. The photoluminescence emission showed a strong and broad peak centered at 594 nm for all samples due to the presence of 4T16A1 transition of the Mn2+ ion. A broad excitation peak centered at 263 and 327 nm is shown in all samples. Because the products show strong luminescent emissions and variety morphologies, they could be readily fabricated into devices for use in phosphor applications.

Keywords

Type
Articles
Copyright
Copyright © Materials Research Society 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Chen, W., Joly, A.G., and Zhang, J.Z.: Up-conversion luminescence of Mn2+ in ZnS:Mn2+ nanoparticles. Phys. Rev. B: Condens. Matter 64, 41202 (2001).CrossRefGoogle Scholar
2Yang, H.S., Holloway, P.H., and Ratna, B.B.: Photoluminescent and electroluminescent properties of Mn-doped ZnS nanocrystals. J. Appl. Phys. 93, 586 (2003).CrossRefGoogle Scholar
3Do, Y.R., Kim, Y.C., Cho, S.H., Ahn, J.H., and Lee, J.G.: Improved output coupling efficiency of a ZnS: Mn thin-film electroluminescent device with addition of a two-dimensional SiO2 corrugated substrate. Appl. Phys. Lett. 82, 4172 (2003).CrossRefGoogle Scholar
4Xu, C.N., Watanabe, T., Akiyana, M., and Zheng, X.G.: Preparation and characteristics of highly triboluminescent ZnS film. Mater. Res. Bull. 34, 1491 (1999).CrossRefGoogle Scholar
5Chen, W., Wang, Z., and Lin, Z.: Thermoluminescence of ZnS nanoparticles. Appl. Phys. Lett. 70, 1465 (1997).CrossRefGoogle Scholar
6Bredol, M. and Merichi, J.: ZnS precipitation: Morphology contro. J. Mater. Sci. 33, 471 (1998).CrossRefGoogle Scholar
7Calandra, P., Gofferdi, M., and Liveri, V.T.: Study of the growth of ZnS nanoparticles in water/AOT/n-heptane microemulsions by UV-absorption spectroscopy. Colloids Surf., A 9, 160 (1999).Google Scholar
8Prevenslik, T.V.: Acoustoluminescence and sonoluminescence. J. Lumin. 87, 1210 (2000).CrossRefGoogle Scholar
9Shionoya, S. and Yen, W.M.: Phosphor Handbook (CRC Press, Boca Raton, FL, 1999).Google Scholar
10Kang, Y.C., Park, S.B., Lenggoro, I.W., and Okuyama, K.: Gd2O3:Eu phosphors particles with spheroid, submicron size and non-aggregation characteristics. J. Phys. Chem. Solids 60, 379 (1999).CrossRefGoogle Scholar
11Tian, Z.R., Voigt, J.A., Liu, J., Mckenzie, B., Mcdermott, M.J., Rodriguez, M.A., Konishi, H., and Xu, H.: Complex and oriented ZnO nanostructures. Nat. Mater. 2, 821 (2003).CrossRefGoogle ScholarPubMed
12Tian, Z.R., Voigt, J.A., Liu, J., Mckenzie, B., and Mcdermott, M.J.: Biomimetic arrays of oriented helical ZnO nanorods and columns. J. Am. Chem. Soc. 124, 12954 (2002).CrossRefGoogle ScholarPubMed
13Mo, M., Yu, J.C., Zhang, L., and Li, S-K.A.: Self-Assembly of ZnO nanorods and nanosheets into hollow microhemispheres and microspheres. Adv. Mater. 17, 756 (2005).CrossRefGoogle Scholar
14Liang, J., Liu, J., Xie, Q., Bai, S., Yu, W., and Qian, Y.: Hydrothermal growth and optical properties of doughnut-shaped ZnO microparticles. J. Phys. Chem. B. 109, 9463 (2005).CrossRefGoogle ScholarPubMed
15Wang, H., Xie, C., and Zeng, D.: ZnO Microspheres self-assembled by hexagonal nanoplates. Chem. Lett. (Jpn.) 34, 260 (2005).CrossRefGoogle Scholar
16Liu, B., Yu, S-H., Zhang, F., Li, L., Zhang, Q., Ren, L., and Jiang, K.: Ring-like nanosheets standing on spindle-like rods: Unusual ZnO superstructures synthesized from a flakelike precursor Zn5(OH)8C12·H2O. J. Phys. Chem. B 108, 4338 (2004).CrossRefGoogle Scholar
17 Data JCPDS No. 5-0566. International Center for Diffraction: Newton Square, PA, 1953.Google Scholar
18Matijevic, E.: Controlled colloid formation. Curr.Opin.Colloid Interface Sci. 1, 176 (1996).CrossRefGoogle Scholar
19Ocana, M., Rodriguez-Clemente, R., and Serna, C.J.: Uniform colloidal particles in solution: Formation mechanisms. Adv. Mater. 7, 212 (1995).CrossRefGoogle Scholar
20Celikkaya, A. and Akine, M.: Morphology of zinc sulfide particles produced from various zinc salts by homogeneous precipitation. J. Am. Ceram. Soc. 73, 245 (1990).CrossRefGoogle Scholar
21Weiner, S. and Addadi, L.: Morphology of zinc sulfide particles produced from various zinc salts by homogeneous precipitation. Trends Biochem. Sci. 16(7), 252 (1991).CrossRefGoogle Scholar
22Naka, K., Tanaka, Y., Chujo, Y., and Ito, Y.: The effect of an anionic. starburst dendrimer on the crystallization of CaCO3. in. aqueous solution. Chem. Commun. 1931 (1999).CrossRefGoogle Scholar
23Naka, K. and Tanaka, Y.: Control crystallization of calcium carbonate in aqueous solution with in-situ radical polymerization of sodium. Langmuir 18, 3655 (2002).CrossRefGoogle Scholar
24Naka, K., Kobayashi, A., and Chujo, Y.: Effect of anionic 4.5-generation polyamidoamine dendrimer on the formation of calcium carbonate polymorphs. Bull. Chem. Soc. Jpn. 75, 2541 (2002).CrossRefGoogle Scholar
25Tian, Z.R., Voigt, J.A., Liu, J., Mckenzie, B., Mcdermott, M., Rodriguez, M.A., Konishi, H., and Xu, H.: Complex and oriented ZnO nanostructures. J. Nat. Mater. 2, 821 (2003).CrossRefGoogle ScholarPubMed
26Liang, J., Liu, J., Xie, Q., Bai, S., Yu, W., and Qian, Y.: Hydrothermal growth and optical properties of doughnut-shaped ZnO microparticles. J. Phys. Chem. B 109, 9463 (2005).CrossRefGoogle ScholarPubMed