Hostname: page-component-78c5997874-dh8gc Total loading time: 0 Render date: 2024-11-06T06:06:03.260Z Has data issue: false hasContentIssue false

Morphological analysis of pores in directionally freeze-cast titanium foams

Published online by Cambridge University Press:  31 January 2011

J.L. Fife
Affiliation:
Department of Materials Science and Engineering, Northwestern University, Evanston, Illinois 60208-3108
J.C. Li
Affiliation:
Department of Materials Science and Engineering, Northwestern University, Evanston, Illinois 60208-3108
D.C. Dunand*
Affiliation:
Department of Materials Science and Engineering, Northwestern University, Evanston, Illinois 60208-3108
P.W. Voorhees
Affiliation:
Department of Materials Science and Engineering, Northwestern University, Evanston, Illinois 60208-3108
*
a) Address all correspondence to this author. e-mail: [email protected]
Get access

Abstract

Synchrotron x-ray tomography was performed on titanium foams with aligned, elongated pores, initially created by sintering directionally freeze-cast preforms using two different powder sizes. Three-dimensional reconstructions of the pore structures were analyzed morphologically using interface shape and interface normal distributions. A smaller powder size leads to more completely sintered titanium walls separating the dendritic pores, which in turn created a more compact distribution of pore shapes as well as stronger pore directionality parallel to the ice growth direction. The distribution of pore shapes is comparable to trabecular bone reported in the literature, indicating the foam's potential as a bone replacement material.

Type
Articles
Copyright
Copyright © Materials Research Society 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Banhart, J.: Manufacture, characterisation and application of cellular metals and metal foams. Prog. Mater. Sci. 46, 559 2001CrossRefGoogle Scholar
2.Shapovalov, V.: Porous metals. MRS Bull. 19, 24 1994CrossRefGoogle Scholar
3.Spoerke, E.D., Murray, N.G.D., Li, H., Brinson, L.C., Dunand, D.C., Stupp, S.I.: Titanium with aligned, elongated pores for orthopedic tissue engineering applications. J. Biomed. Mater. Res., A 84, 402 2008CrossRefGoogle ScholarPubMed
4.Dunand, D.C.: Processing of titanium foams. Adv. Eng. Mater. 6, 369 2004CrossRefGoogle Scholar
5.Schuh, A., Luyten, J., Vidael, R., Honle, W., Schmickal, T.: Porous titanium implant materials and their potential in orthopedic surgery. Materialwiss. Werkstofftech. 38, 1015 2007CrossRefGoogle Scholar
6.Zhang, H., Cooper, A.I.: Aligned porous structures by directional freezing. Adv. Mater. 19, 1529 2007CrossRefGoogle Scholar
7.Deville, S.I.: Freeze-casting of porous ceramics: A review of current achievements and issues. Adv. Eng. Mater. 10, 155 2008CrossRefGoogle Scholar
8.Koch, D., Andresen, L., Schmedders, T., Grathwohl, G.: Evolution of porosity by freeze casting and sintering of sol-gel derived ceramics. J. Sol-Gel Sci. Technol. 26, 149 2003CrossRefGoogle Scholar
9.Sofie, S.W., Dogan, F.: Freeze casting of aqueous alumina slurries with glycerol. J. Am. Ceram. Soc. 84, 1459 2001CrossRefGoogle Scholar
10.Araki, K., Halloran, J.W.: Room-temperature freeze casting for ceramics with nonaqueous sublimable vehicles in the naphthalene-camphor eutectic system. J. Am. Ceram. Soc. 87, 2014 2004CrossRefGoogle Scholar
11.Chino, Y., Dunand, D.C.: Directionally freeze-cast titanium with aligned, elongated pores. Acta Mater. 56, 105 2008CrossRefGoogle Scholar
12.Coleou, C., Lesaffre, B., Brzoska, J.B., Flin, F.: Three-dimensional snow images by x-ray microtomography. Ann. Glaciol. 32, 75 2001CrossRefGoogle Scholar
13.Do, G.S., Sagara, Y., Tabata, M., Kudoh, K., Higuchi, T.: Three-dimensional measurement of ice crystals in frozen beef with a micro-slicer image processing system. Int. J. Refrig. 27, 184 2004CrossRefGoogle Scholar
14.Flin, F., Brzoska, J.B., Coeurjolly, D., Pieritz, R.A., Lesaffre, B., Coleou, C., Lamboley, P., Teytaud, O., Vignoles, G.L., Delesse, J.F.: Adaptive estimation of normals and surface area for discrete 3D objects: Application to snow binary data from x-ray tomography. IEEE Trans. Image Process. 14, 585 2005CrossRefGoogle ScholarPubMed
15.Flin, F., Brzoska, J.B., Lesaffre, B., Coleou, C., Piertitz, R.A.: Three-dimensional geometric measurements of snow microstructural evolution under isothermal conditions. Ann. Glaciol. 38, 39 2004CrossRefGoogle Scholar
16.Mousavi, R., Miri, T., Cox, P.W., Fryer, P.J.: Imaging food freezing using x-ray microtomography. Int. J. Food Sci. Technol. 42, 714 2007CrossRefGoogle Scholar
17.Lambert, J., Cantat, I., Delannay, R., Renault, A., Graner, F., Glazier, H.A., Veretennikov, I., Cloetens, P.: Extraction of relevant physical parameters from 3D images of foams obtained by x-ray tomography. Colloids Surf., A: Physicochem. Eng. Aspects 263, 295 2005CrossRefGoogle Scholar
18.Monnereau, C., Vignes-Adler, M.: Optical tomography of real three-dimensional foams. J. Colloid Interface Sci. 202, 45 1998CrossRefGoogle Scholar
19.Bart-Smith, H., Bastawros, A.F., Mumm, D.R., Evans, A.G., Sypeck, D.J., Wadley, H.N.G.: Compressive deformation and yielding mechanisms in cellular Al alloys determined using x-ray tomography and surface strain mapping. Acta Mater. 46, 3583 1998CrossRefGoogle Scholar
20.Dillard, T., N'guyen, F., Maire, E., Salvo, L., Forest, S., Bienvenu, Y., Bartout, J.D., Croset, M., Dendievel, R., Cloetens, P.: 3D quantitative image analysis of open-cell nickel foams under tension and compression loading using x-ray microtomography. Philos. Mag. 85, 2147 2005CrossRefGoogle Scholar
21.McDonald, S.A., Mummery, P.M., Johnson, G., Withers, P.J.: Characterization of the three dimensional structure of a metallic foam during compressive deformation. J. Microsc. 223, 150 2006CrossRefGoogle ScholarPubMed
22.Benouali, A.H., Froyen, L., Dillard, T., Forest, S., N'guyen, F.: Investigation on the influence of cell shape anisotropy on the mechanical performance of closed cell aluminium foams using microcomputed tomography. J. Mater. Sci. 40, 5801 2005CrossRefGoogle Scholar
23.Drew, D.A.: Evolution of geometric statistics. J. Appl. Math. 50, 649 1990Google Scholar
24.Guillaume, L., Florent, D., Atilla, B.: Constant curvature region decomposition of 3D-meshes by a mixed approach vertex-triangle. J. WSCG 12, 245 2004Google Scholar
25.Mendoza, R., Alkemper, J., Voorhees, P.W.: The morphological evolution of dendritic microstructures during coarsening. Metall. Mater. Trans. A 34, 481 2003CrossRefGoogle Scholar
26.Kammer, D., Voorhees, P.W.: The morphological evolution of dendritic microstructures during coarsening. Acta Mater. 54, 1549 2006CrossRefGoogle Scholar
27.Deville, S., Saiz, E., Tomsia, A.P.: Freeze casting of hydroxyapatite scaffolds for bone tissue engineering. Biomaterials 27, 5480 2006CrossRefGoogle ScholarPubMed
28.Moon, J.W., Hwang, H.J., Awano, M., Maeda, K.: Preparation of NiO–YSZ tubular support with radially aligned pore channels. Mater. Lett. 57, 1428 2003CrossRefGoogle Scholar
29.Jinnai, H., Watashiba, H., Kajihara, T., Nishikawa, Y., Takahashi, M., Ito, M.: Surface curvatures of trabecular bone microarchitecture. Bone 30, 191 2002CrossRefGoogle ScholarPubMed
30.Jinnai, H., Nishikawa, Y., Ito, M., Smith, S.D., Agard, D.A., Spontak, R.J.: Topological similarity of sponge-like bicontinuous morphologies differing in length scale. Adv. Mater. 14, 1615 20023.0.CO;2-S>CrossRefGoogle Scholar
31.Kwon, Y., Thornton, K., Voorhees, P.W.: Coarsening of bicontinuous structures via nonconserved and conserved dynamics. Phys. Rev. E: Stat., Nonlinear, Soft Matter Phys. 75, 021120 2007CrossRefGoogle ScholarPubMed