Hostname: page-component-586b7cd67f-r5fsc Total loading time: 0 Render date: 2024-11-26T10:08:00.406Z Has data issue: false hasContentIssue false

Monte Carlo simulations of magnetization state of ellipsoidal CoCu particles in disordered self-assembled arrays

Published online by Cambridge University Press:  03 May 2016

V.Z.C. Paes
Affiliation:
Departamento de Física, Universidade Federal do Paraná, 81531-990, Curitiba, PR, Brazil
J. Varalda
Affiliation:
Departamento de Física, Universidade Federal do Paraná, 81531-990, Curitiba, PR, Brazil
P. Schio
Affiliation:
Departamento de Física, Universidade Federal de São Carlos, 13565-905 São Carlos, SP, Brazil
J.T. Matsushima
Affiliation:
Laboratório Associado de Sensores e Materiais, Instituto Nacional de Pesquisas Espaciais, CEP 12227-010, São José dos Campos, SP, Brazil
E.C. Pereira
Affiliation:
Departamento de Química, Universidade Federal de São Carlos, 13565-905 São Carlos, SP, Brazil
A.J.A. de Oliveira
Affiliation:
Departamento de Física, Universidade Federal de São Carlos, 13565-905 São Carlos, SP, Brazil
D.H. Mosca*
Affiliation:
Departamento de Física, Universidade Federal do Paraná, 81531-990, Curitiba, PR, Brazil
*
a)Address all correspondence to this author. e-mail: [email protected]
Get access

Abstract

Monte Carlo (MC) simulations of the magnetization states of disordered self-assembled arrays of particles consisting of Co87Cu13 alloy are investigated. The assemblies of magnetic particles with ellipsoidal shapes and volumes ranging from 5 to 50 µm3 exhibit densities of about 3 × 106 particles per mm2. Magnetization was obtained in the framework of Stoner–Wohlfarth model extended to include phenomenological contributions of second-order magnetic anisotropy and coercivity mechanism with distinct configuration of easy axes of magnetization. MC simulations for assemblies containing no more than 100 particles with negligible magnetic interaction between each other and exhibiting saturation magnetization and magnetic anisotropy constant values close to those found for cobalt in bulk are in good agreement with experimental results. We evaluate and validate our computational modeling using samples having particles with different sizes and different angular distributions of the easy axis of magnetization. A simple numerical approach with minimum of parameters was used to take into account the coercive fields of the samples. Reasonable simulation results are generated based on realistic size distributions and angular distributions of easy axis of magnetization.

PACS numbers: 75.30.Gw,75.60-d,75.70-i

Type
Articles
Copyright
Copyright © Materials Research Society 2016 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

b)

Present address: Instituto de Física, Universidade Federal do Rio Grande do Sul, Av. Bento Gonçalves, 9500 – Caixa Postal 15051 – CEP 91501-970 – Porto Alegre, RS, Brazil.

Contributing Editor: Yang-T. Cheng

References

REFERENCES

Singamanemi, S., Blizyiuk, V.N., Binek, C., and Tsymbal, E.Y.: Magnetic nanoparticles: Recent advances in synthesis, self-assembly and applications. J. Mater. Chem. 21, 16819 (2011).Google Scholar
Dormann, J.L., Fiorani, D., and Tronc, E.: Magnetic relaxation in fine-particle systems. Adv. Chem. Phys. 98, 283 (1997).Google Scholar
Bolte, M., Eiselt, R., Meier, G., Kim, D-H., and Fischer, P.: Real space observation of dipolar interaction in arrays of Fe microelements. J. Appl. Phys. 99, 08H301 (2006).CrossRefGoogle Scholar
Abraham, D.W. and Lu, Y.: Observation of switching of magnetic particle arrays with dipole interaction field effects. J. Appl. Phys. 98, 023902 (2005).CrossRefGoogle Scholar
Ross, C.A., Haratani, S., Castaño, F.J., Hao, Y., Hwang, M., Shima, M., Cheng, J.Y., Vögeli, B., Farhoud, M., Walsh, M., and Smith, H.I.: Magnetic behavior of lithographically patterned particles arrays. J. Appl. Phys. 91, 6848 (2002).CrossRefGoogle Scholar
Martinez-Boubeta, C., Simeonidis, K., Makridis, A., Angelakeris, M., Iglesias, O., Guardia, P., Cabot, A., Yedra, L., Estrade, S., Peiro, F., Saghi, Z., Midgley, P.A., Conde-Lebora, I., Serantes, D., and Baldomir, D.: Learning from nature to improve the heat generation of iron-oxide nanoparticles for magnetic hyperthermia applications. Sci. Rep. 3, 1652 (2013).CrossRefGoogle ScholarPubMed
Stoner, E.C. and Wohlfarth, E.P.: A mechanism of magnetic hysteresis in heterogenous alloys. Philos. Trans. Roy. Soc. A 240, 599 (1948); reprinted by IEEE Trans. Magn. 27, 3475 (1991).Google Scholar
Porro, J.M., Berger, A., Grimsditch, M., Metlushko, V., Ilic, B., and Vavassori, P.: Effect of spatially asymmetric dipolar interactions in the magnetization reversal of closely spaced ferromagnetic nanoisland arrays. J. Appl. Phys. 111, 07B913 (2012).Google Scholar
Bisero, D., Cremon, P., Madami, M., Sepioni, M., Tacchi, S., Gubbiotti, G., Carlotti, G., Adeyeye, A.O., Singh, N., and Goolaup, S.: Effect of dipolar interaction on the magnetization state of chains of rectangular particles located either head-to-tail or side-by-side. J. Nanopart. Res. 13, 5691 (2011).CrossRefGoogle Scholar
Dantas, C.C. and de Andrade, L.A.: Micromagnetic simulations of small arrays of submicron ferromagnetic particles. Phys. Rev. B: Condens. Matter Mater. Phys. 78, 024441 (2008).CrossRefGoogle Scholar
Hyndman, R., Mougin, A., Sampaio, L.C., Ferre, J., Jameta, J.P., Meyer, P., Mathet, V., Chappert, C., Mailly, D., and Gierak, J.: Magnetization reversal in weakly coupled patterns. J. Magn. Magn. Mater. 240, 34 (2002).CrossRefGoogle Scholar
García-Otero, J., Porto, M., Rivas, J., and Bunde, A.: Influence of dipolar interaction on magnetic properties of ultrafine ferromagnetic particles. Phys. Rev. Lett. 84, 167 (2000).CrossRefGoogle ScholarPubMed
Aign, T., Meyer, P., Lemerle, S., Jamet, J.P., Ferré, J., Mathet, V., Chappert, C., Gierak, J., Vieu, C., Rousseaux, F., Launois, H., and Bernas, H.: Magnetization reversal in arrays of perpendicularly magnetized ultrathin dots coupled by dipolar interaction. Phys. Rev. Lett. 81, 5656 (1998).Google Scholar
Stamps, R.L. and Camley, R.E.: High-frequency response and reversal dynamics of two-dimensional magnetic dot array. Phys. Rev. B: Condens. Matter Mater. Phys. 60, 12264 (1999).CrossRefGoogle Scholar
Scheinfein, M.R., Schmidt, K.E., Heim, K.R., and Hembree, G.G.: Magnetic order in two-dimensional arrays of nanometer-sized superparamagnets. Phys. Rev. Lett. 76, 1541 (1996).Google Scholar
Du, H-F., He, W., Sun, D-L., Fang, Y-P., Liu, H-L., Zhang, X-Q., and Chen, Z-H.: Monte Carlo simulation of magnetic properties of irregular Fe islands on Pb/Si(111) substrate based on the scanning tunneling microscopy image. Appl. Phys. Lett. 96, 132502 (2010).Google Scholar
Varalda, J.: Caracterização magnética de filmes de ligas e multicamadas magnéticas (in portuguese). M. Sc. Thesis, Universidade Federal de São Carlos, 2000.Google Scholar
Karaagac, O., Kockar, H., and Alper, M.: Electrodeposited cobalt films: The effect of deposition potentials on the film properties. J. Optoelectron. Adv. Mater. 15, 1412 (2013).Google Scholar
Szabó, Z. and Iványi, A.: Computer-aided simulation of Stoner-Wohlfarth model. J. Magn. Magn. Mater. 215, 33 (2000).Google Scholar
Jamet, M., Wernsdorfer, W., Thirion, C., Dupuis, V., Melinon, P., and Perez, A.: Magnetic anisotropy in single clusters. Phys. Rev. B: Condens. Matter Mater. Phys. 69, 024401 (2004).Google Scholar
Paes, V.Z.C., Graff, I.L., Varalda, J., Etgens, V.H., and Mosca, D.H.: The role of magnetoelastic and magnetostrictive energies in the magnetization process of MnAs/GaAs epilayers. J. Phys.: Condens. Matter 25, 046003 (2013).Google Scholar
Chen, D-X., Pardo, E., and Sanchez, A.: Demagnetizing factors of rectangular prisms and ellipsoids. IEEE Trans. Magn. 38, 1742 (2002).Google Scholar
Zhang, H-W., Zhang, S-Y., Shen, B-G., and Kronmuller, H.: The magnetization behavior of nanocrystalline permanent magnets based on the Stoner–Wohlfarth model. J. Magn. Magn. Mater. 260, 352 (2003).Google Scholar
Winter, A., Pascher, H., Krenn, H., Liu, X., and Furdyna, J.K.: Interpretation of hysteresis loops of GaMnAs in the framework of the Stoner–Wohlfarth model. J. Appl. Phys. 108, 043921 (2010).CrossRefGoogle Scholar
Hrabovsky, D., Vanelle, E., Fert, A.R., Yee, D.S., Redoules, J.P., Sadowski, J., Kanski, J., and Ilver, L.: Magnetization reversal in GaMnAs layers studied by Kerr effect. Appl. Phys. Lett. 81, 2806 (2002).Google Scholar
Skomski, R., Hadjipanayis, G.C., and Sellmyer, D.J.: Effective demagnetizing factors of complicated particle mixtures. IEEE Trans. Magn. 43, 2956 (2007).Google Scholar