Hostname: page-component-745bb68f8f-v2bm5 Total loading time: 0 Render date: 2025-01-25T18:46:27.135Z Has data issue: false hasContentIssue false

Monodisperse Au/aminosilica composite nanospheres: Facile one-step synthesis and their applications in gene transfection

Published online by Cambridge University Press:  11 July 2012

Lei Wang
Affiliation:
Division of Nanomaterials and Chemistry, Hefei National Laboratory for Physical Sciences at Microscale, University of Science and Technology of China, Hefei 230026, China
Tuck-yun Cheang
Affiliation:
Department of Vascular Surgery, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou 510080, China
Shenming Wang
Affiliation:
Department of Vascular Surgery, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou 510080, China
Zuojun Hu
Affiliation:
Department of Vascular Surgery, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou 510080, China
Zhouhao Xing
Affiliation:
Division of Nanomaterials and Chemistry, Hefei National Laboratory for Physical Sciences at Microscale, University of Science and Technology of China, Hefei 230026, China
Wengang Qu
Affiliation:
Division of Nanomaterials and Chemistry, Hefei National Laboratory for Physical Sciences at Microscale, University of Science and Technology of China, Hefei 230026, China
Anwu Xu*
Affiliation:
Division of Nanomaterials and Chemistry, Hefei National Laboratory for Physical Sciences at Microscale, University of Science and Technology of China, Hefei 230026, China
*
a)Address all correspondence to this author. e-mail: [email protected]
Get access

Abstract

In this study, Au/aminosilica composite nanospheres have been synthesized via a simple one-pot route using HAuCl4 and N-(3-trimethoxysilylpropyl)-ethylenediamine as starting materials. Scanning electron microscopy results show that these spheres are with diameters of about 300 nm. The obtained Au/aminosilica nanospheres were used as nonviral carriers for gene delivery. Compared with commercial Lipofectamine 2000, the Au/aminosilica nanospheres are with higher transfection efficiency and lower cytotoxicity. Furthermore, the nanospheres are biocompatible, which may find applications in gene delivery and drug carrier.

Type
Articles
Copyright
Copyright © Materials Research Society 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Rosi, N.L. and Mirkin, C.A.: Nanostructures in biodiagnostics. Chem. Rev. 105, 1547 (2005).CrossRefGoogle ScholarPubMed
2.Lu, Y., Shi, C., Hu, M.J., Xu, Y.J., Yu, L., Wen, L.P., Zhao, Y., Xu, W.P., and Yu, S.H.: Magnetic alloy nanorings loaded with gold nanoparticles: Synthesis and applications as multimodal imaging contrast agents. Adv. Funct. Mater. 20, 3701 (2010).CrossRefGoogle Scholar
3.Corma, A. and Serna, P.: Chemoselective hydrogenation of nitro compounds with supported gold catalysts. Science 313, 332 (2006).CrossRefGoogle ScholarPubMed
4.Tanahashi, I. and Mito, A.: Femtosecond optical nonlinearities of Au/TiO2 thin films prepared by a sputtering method. J. Mater. Res. 26, 763 (2011).CrossRefGoogle Scholar
5.Siwy, Z., Trofin, L., Kohli, P., Baker, L.A., Trautmann, C., and Martin, C.R.: Protein biosensors based on biofunctionalized conical gold nanotubes. J. Am. Chem. Soc. 127, 5000 (2005).CrossRefGoogle ScholarPubMed
6.Hassenkam, T., Moth-Poulsen, K., Stuhr-Hansen, N., Nørgaard, K., Kabir, M.S., and Bjørnholm, T.: Self-assembly and conductive properties of molecularly linked gold nanowires. Nano Lett. 4, 19 (2004).CrossRefGoogle Scholar
7.Guo, R., Li, R.T., Li, X.L., Zhang, L.Y., Jiang, X.Q., and Liu, B.R.: Dual-functional alginic acid hybrid nanospheres for cell imaging and drug delivery. Small 5, 709 (2009).CrossRefGoogle ScholarPubMed
8.Ghosh, P.S., Kim, C.K., Han, G., Forbes, N.S., and Rotello, V.M.: Efficient gene delivery vectors by tuning the surface charge density of amino acid-functionalized gold nanoparticles. ACS Nano 2, 2213 (2008).CrossRefGoogle ScholarPubMed
9.Ghosh, P., Han, G., De, M., Kim, C.K., and Rotello, V.M.: Gold nanoparticles in delivery applications. Adv. Drug Delivery Rev. 60, 1307 (2008).CrossRefGoogle ScholarPubMed
10.Rosi, N.L., Giljohann, D.A., Thaxton, C.S., Lytton-Jean, A.K.R., Han, M.S., and Mirkin, C.A.: Oligonucleotide-modified gold nanoparticles for intracellular gene regulation. Science 312, 1027 (2006).CrossRefGoogle ScholarPubMed
11.Elbakry, A., Zaky, A., Liebl, R., Rachel, R., Goepferich, A., and Breunig, M.: Layer-by-layer assembled gold nanoparticles for siRNA delivery. Nano Lett. 9, 2059 (2009).CrossRefGoogle ScholarPubMed
12.Chou, L.Y.T., Ming, K., and Chan, W.C.W.: Strategies for the intracellular delivery of nanoparticles. Chem. Soc. Rev. 40, 233 (2011).CrossRefGoogle ScholarPubMed
13.Guo, S.T., Huang, Y.Y., Jiang, Q., Sun, Y., Deng, L.D., Liang, Z.C., Du, Q., Xing, J.F., Zhao, Y.L., Wang, P.C., Dong, A.J., and Liang, X.J.: Enhanced gene delivery and siRNA silencing by gold nanoparticles coated with charge-reversal polyelectrolyte. ACS Nano 4, 5505 (2010).CrossRefGoogle ScholarPubMed
14.Phim, W.K., Kim, J.S., and Nam, J.M.: Lipid-gold-nanoparticle hybrid-based gene delivery. Small 4, 1651 (2008).Google Scholar
15.Mirkin, C.A., Letsinger, R.L., Mucic, R.C., and Storhoff, J.J.: A DNA-based method for rationally assembling nanoparticles into macroscopic materials. Nature 382, 607 (1996).CrossRefGoogle ScholarPubMed
16.Connor, E.E., Mwamuka, J., Gole, A., Murphy, C.J., and Wyatt, M.D.: gold nanoparticles are taken up by human cells but do not cause acute cytotoxicity. Small 1, 325 (2005).CrossRefGoogle Scholar
17.Cho, E.C., Xie, J.W., Wurm, P.A., and Xia, Y.N.: Understanding the role of surface charges in cellular adsorption versus internalization by selectively removing gold nanoparticles on the cell surface with a I2/KI etchant. Nano Lett. 9, 1080 (2009).CrossRefGoogle ScholarPubMed
18.Qu, W.G., Wang, S.M., Hu, Z.J., Cheang, T.Y., Xing, Z.H., Zhang, X.J., and Xu, A.W.: In situ synthesis of gold@3,4-dihydroxy-L-phenylalanine core-shell nanospheres used for cell imaging. J. Phys. Chem. C 114, 13010 (2010).CrossRefGoogle Scholar
19.Botella, P., Corma, A., and Navarro, M.T.: Single gold nanoparticles encapsulated in monodispersed regular spheres of mesostructured silica produced by pseudomorphic transformation. Chem. Mater. 19, 1979 (2007).CrossRefGoogle Scholar
20.Lu, Y., Yin, Y.D., Li, Z.Y., and Xia, Y.N.: Synthesis and self-assembly of Au@SiO2 core-shell colloids. Nano Lett. 2, 785 (2002).CrossRefGoogle Scholar
21.Liu, S.H., Wong, Y., Wang, Y.B., Wang, D.S., and Han, M.Y.: Controlled release and absorption resonance of fluorescent silica-coated platinum nanoparticles. Adv. Funct. Mater. 17, 3147 (2007).CrossRefGoogle Scholar
22.Zhang, P. and Guo, Y.Y.: Surface-enhanced Raman scattering inside metal nanoshells. J. Am. Chem. Soc. 131, 3808 (2009).CrossRefGoogle ScholarPubMed
23.Lu, Y., Zhao, Y., Yu, L., Dong, L., Shi, C., Hu, M.J., Xu, Y.J., Wen, L.P., and Yu, S.H.: Hydrophilic Co@Au yolk/shell nanospheres: Synthesis, assembly, and application to gene delivery. Adv. Mater. 22, 1407 (2010).CrossRefGoogle ScholarPubMed
24.Roca, M. and Haes, A.J.: Silica-void-gold nanoparticles: Temporally stable surface-enhanced Raman scattering substrates. J. Am. Chem. Soc. 130, 14273 (2008).CrossRefGoogle ScholarPubMed
25.Wu, X.J. and Xu, D.S.: Formation of Yolk/SiO2 shell structures using surfactant mixtures as template. J. Am. Chem. Soc. 131, 2774 (2009).CrossRefGoogle ScholarPubMed
26.Ung, T., Liz-Marzán, L.M., and Mulvaney, P.: Optical properties of thin films of Au@SiO2 particles. J. Phys. Chem. B 105, 3441 (2001).CrossRefGoogle Scholar
27.Xu, J. and Perry, C.C.: A novel approach to Au@SiO2 core-shell spheres. J. Non-Cryst. Solids 353, 1212 (2007).CrossRefGoogle Scholar
28.Gutierrez, L.F., Hamoudi, S., and Belkacemi, K.: Synthesis of gold catalysts supported on mesoporous silica materials: Recent developments. Catalysts 1, 97 (2011).CrossRefGoogle Scholar
29.Kim, M.H., Na, H.K., Kim, Y.K., Ryoo, S.R., Cho, H.S., Lee, K.E., Jeon, H., Ryoo, R., and Min, D.H.: Facile synthesis of monodispersed mesoporous silica nanoparticles with ultralarge pores and their application in gene delivery. ACS Nano 5, 3568 (2011).CrossRefGoogle ScholarPubMed
30.Roy, I., Ohulchanskyy, T.Y., Bharali, D.J., Pudavar, H.E., Mistretta, R.A., Kaur, N., and Prasad, P.N.: Optical tracking of organically modified silica nanoparticles as DNA carriers: A nonviral, nanomedicine approach for gene delivery. Proc. Natl. Acad. Sci. U.S.A. 102, 279 (2005).CrossRefGoogle ScholarPubMed
31.He, X.X., Wang, K.M., Tan, W.H., Liu, B., Lin, X., He, C.M., Li, D., Huang, S.S., and Li, J.: Bioconjugated nanoparticles for DNA protection from cleavage. J. Am. Chem. Soc. 125, 7168 (2003).CrossRefGoogle ScholarPubMed
32.Kneuer, C., Sameti, M., Bakowsky, U., Schiestel, T., Schirra, H., Schmidt, H., and Lehr, C.M.: A nonviral DNA delivery system based on surface modified silica-nanoparticles can efficiently transfect cells in vitro. Bioconjugate Chem. 11, 926 (2000).CrossRefGoogle ScholarPubMed
33.Sun, X.P., Dong, S.J., and Wang, E.K.: One-step preparation and characterization of poly(propyleneimine) dendrimer-protected silver nanoclusters. Macromolecules 37, 7105 (2004).CrossRefGoogle Scholar
34.Prasad, B.L.V., Stoeva, S.I., Sorensen, C.M., Zaikovski, V., and Klabunde, K.J.: Gold nanoparticles as catalysts for polymerization of alkylsilanes to siloxane nanowires, filaments, and tubes. J. Am. Chem. Soc. 125, 10488 (2003).CrossRefGoogle ScholarPubMed
35.Jana, N.R., Gearheart, L., and Murphy, C.J.: Seeding growth for size control of 5-40 nm diameter gold nanoparticles. Langmuir 17, 6782 (2001).CrossRefGoogle Scholar
36.Thomas, M. and Klibanov, A.M.: Conjugation to gold nanoparticles enhances polyethylenimine’s transfer of plasmid DNA into mammalian cells. Proc. Natl. Acad. Sci. U.S.A. 100, 9138 (2003).CrossRefGoogle ScholarPubMed
37.Saul, J.M., Wang, C.H.K., Ng, C.P., and Pun, S.H.: Multilayer nanocomplexes of polymer and DNA exhibit enhanced gene delivery. Adv. Mater. 20, 19 (2008).CrossRefGoogle Scholar
38.Sunshine, J., Green, J.J., Mahon, K.P., Yang, F., Eltoukhy, A.A., Nguyen, D.N., Langer, R., and Anderson, D.G.: Small-molecule end-groups of linear polymer determine cell-type gene-delivery efficacy. Adv. Mater. 21, 4947 (2009).CrossRefGoogle ScholarPubMed
39.Kneuer, C., Sameti, M., Haltner, E.G., Schiestel, T., Schirra, H., Schmidt, H., and Lehr, C.M.: Silica nanoparticles modified with aminosilanes as carriers for plasmid DNA. Int. J. Pharm. 196, 257 (2000).CrossRefGoogle ScholarPubMed
40.Tsai, C.P., Chen, C.Y., Hung, Y., Chang, F.H., and Mou, C.Y.: Monoclonal antibody-functionalized mesoporous silica nanoparticles (MSN) for selective targeting breast cancer cells. J. Mater. Chem. 19, 5737 (2009).CrossRefGoogle Scholar
41.Xia, T., Kovochich, M., Liong, M., Meng, H., Kabehie, S., George, S., Zink, J.I., and Nel, A.E.: Polyethyleneimine coating enhances the cellular uptake of mesoporous silica nanoparticles and allows safe delivery of siRNA and DNA constructs. ACS Nano 3, 3273 (2009).CrossRefGoogle ScholarPubMed
42.Taylor, K.M.L., Kim, J.S., Rieter, W.J., An, H., Lin, W.L., and Lin, W.B.: Mesoporous silica nanospheres as highly efficient MRI contrast agents. J. Am. Chem. Soc. 130, 2154 (2008).CrossRefGoogle ScholarPubMed
43.Kim, J., Kim, H.S., Lee, N., Kim, T., Kim, H., Yu, T., Song, I.C., Moon, W.K., and Hyeon, T.: Multifunctional uniform nanoparticles composed of a magnetite nanocrystal core and a mesoporous silica shell for magnetic resonance and fluorescence imaging and for drug delivery. Angew. Chem. Int. Ed. 47, 8438 (2008).CrossRefGoogle Scholar
44.Gao, X. and Huang, L.: Cationic liposome-mediated gene transfer. Gene Ther. 2, 710 (1995).Google ScholarPubMed
45.Varga, C.M., Hong, K., and Lauffenburger, D.A.: Quantitative analysis of synthetic gene delivery vector design properties. Mol. Ther. 4, 438 (2001).CrossRefGoogle ScholarPubMed
46.Torchilin, V.P.: Recent advances with liposomes as pharmaceutical carriers. Nat. Rev. Drug Discovery 4, 145 (2005).CrossRefGoogle ScholarPubMed
47.Matsui, K., Sando, S., Sera, T., Aoyama, Y., Sasaki, Y., Komatsu, T., Terashima, T., and Kikuchi, J.: Cerasome as an infusible, cell-friendly, and serum-compatible transfection agent in a viral size. J. Am. Chem. Soc. 128, 3114 (2006).CrossRefGoogle Scholar