Hostname: page-component-745bb68f8f-l4dxg Total loading time: 0 Render date: 2025-01-11T06:40:08.609Z Has data issue: false hasContentIssue false

Molecular dynamics simulations of surface oxidation and of surface slip irreversibility under fatigue in oxygen environment

Published online by Cambridge University Press:  30 October 2017

Zhengxuan Fan
Affiliation:
Laboratoire des Solides Irradiés, Centre National de la Recherche Scientifique, Commissariat á l'Énergie Atomique et aux Énergies Alternatives, École Polytechnique, Université Paris-Saclay, Palaiseau 91128, France; and Directions Énergie Nucléaire, Département des Matériaux Nucléaires, Service de Recherche de Métallurgie Appliquée, Commissariat á l'Énergie Atomique et aux Énergies Alternatives, Université Paris-Saclay, Gif sur Yvette 91190, France
Olivier Hardouin Duparc*
Affiliation:
Laboratoire des Solides Irradiés, Centre National de la Recherche Scientifique, Commissariat á l'Énergie Atomique et aux Énergies Alternatives, École Polytechnique, Université Paris-Saclay, Palaiseau 91128, France
Maxime Sauzay
Affiliation:
Directions Énergie Nucléaire, Département des Matériaux Nucléaires, Service de Recherche de Métallurgie Appliquée, Commissariat á l'Énergie Atomique et aux Énergies Alternatives, Université Paris-Saclay, Gif sur Yvette 91190, France
Boubakar Diawara
Affiliation:
Institut de Recherche de Chimie Paris, Chimie ParisTech, Centre National de la Recherche Scientifique, Paris Sciences & Lettres Research University, Paris 75005, France
Adri C.T. van Duin
Affiliation:
Department of Mechanical and Nuclear Engineering, Pennsylvania State University, Pennsylvania 16801, USA
*
a)Address all correspondence to this author. e-mail: [email protected].
Get access

Abstract

Atomistic simulations are carried out to analyze the influence of oxygen environment on nickel and copper surface roughness and notch initiation. The early stages of oxidation of nickel and copper surfaces are first simulated and compared with experimental observations. Various oxygen superstructures observed on metal surfaces are reproduced as well as the nucleation of small NiO embryos. Nickel and copper surface oxidation mechanisms are different and different “oxide” nano layers are formed. None of these superficial nano layers has a major influence on the mechanical behavior of surface slips as they do not change the surface roughness fatigue evolution and micro-notch production. These atomistic results agree with experimental studies which report similar development of persistent slip band surface relief in inert and in air environment. A general model for the estimation of surface slip irreversibility is also provided and the models of environment-assisted surface relief evolution and microcrack initiation are revisited.

Type
Articles
Copyright
Copyright © Materials Research Society 2017 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

Contributing Editor: Gunther Eggeler

References

REFERENCES

Woods, P.J.: Low-amplitude fatigue of copper and copper–5 at.% aluminium single crystals. Philos. Mag. 28, 155 (1973).Google Scholar
Differt, K., Esmann, U., and Mughrabi, H.: A model of extrusions and intrusions in fatigued metals II. Surface roughening by random irreversible slip. Philos. Mag. A 54, 237 (1986).Google Scholar
Lépinoux, J. and Kubin, L.P.: Dislocation mechanisms and steady states in the cyclic deformation of face centred cubic crystals. Philos. Mag. A 54, 631 (1986).Google Scholar
Weidner, A., Sauzay, M., and Skrotzki, W.: Experimental evaluation of the cyclic slip irreversibility factor. Key Eng. Mater. 465, 223 (2011).CrossRefGoogle Scholar
Fan, Z., Hardouin Duparc, O., and Sauzay, M.: Molecular dynamics simulation of surface step reconstruction and irreversibility under cyclic loading. Acta Mater. 102, 149 (2016).Google Scholar
Suresh, S.: Fatigue of Metals, 2nd ed. (Cambridge University Press, Cambridge, U.K., 2001).Google Scholar
Thompson, N., Wadsworth, N., and Louat, N.: The origin of fatigue fracture in copper. Philos. Mag. 1, 113 (1956).Google Scholar
Kwon, I.B., Fine, M.E., and Weertman, J.: Fatigue damage in copper single crystals at room and cryogenic temperatures. Acta Metall. 37, 2937 (1989).CrossRefGoogle Scholar
Kwon, I.B., Fine, M.E., and Weertman, J.: Microstructural studies on the initiation and growth of small fatigue crack at 298, 77, and 4.2 K in polycrystalline copper. Acta Metall. 37, 2927 (1989).Google Scholar
Venkataraman, G., Sriram, T.S., Fine, M.E., and Chung, Y.W.: STM and surface analytical study of the effect of environment on fatigue crack initiation in silver single crystals I: Surface chemical effects. Scr. Metall. Mater. 24, 273 (1990).Google Scholar
Sriram, T.S., Fine, M.E., and Chung, Y.W.: STM and surface analytical study of the effect of environment on fatigue crack initiation in silver single crystals II: Effects of oxygen partial pressure. Scr. Metall. Mater. 24, 279 (1990).Google Scholar
Sriram, T.S., Fine, M.E., and Chung, Y.W.: The application of surface science to fatigue: The role of surface chemistry and surface modification in fatigue crack initiation in silver single crystals. Acta Metall. 40, 2769 (1992).Google Scholar
Fujita, F.E.: Oxidation and dislocation mechanisms in fatigue-crack formation. Fracture of solids, Drucker, D.C. and Gilman, J.J., eds. (Interscience Publishers, New York, New York, 1963), pp. 657670.Google Scholar
Bauer, C.E., Speiser, R., and Hirth, J-P.: Surface energy as a function of oxygen activity. Metall. Mater. Trans. 7, 75 (1976).Google Scholar
Tanaka, K. and Mura, T.: A dislocation model for fatigue crack initiation. J. Appl. Mech. 48, 97 (1981).Google Scholar
Sauzay, M. and Liu, J.: Simulation of surface crack initiation induced by slip localization and point defect kinetics. Adv. Mater. Res. 891–892, 542 (2014).Google Scholar
Shen, H., Podlaseck, S.E., and Kramer, I.R.: Effect of vacuum on the fatigue life of aluminum. Acta Metall. 14, 341 (1966).Google Scholar
Laird, C. and Smith, G.C.: Initial stages of damage in high stress fatigue in some pure metals. Philos. Mag. 8, 19451963 (1963).Google Scholar
Martin, D.E.: Plastic strain fatigue in air and vacuum. J. Basic Eng. 87, 850 (1965).Google Scholar
Greenfield, I.G.: The effect of diffused surface layers and oxygen atmosphere on the development of fatigue striations and cracks in copper single crystals. Acta Metall. 19, 857 (1971).Google Scholar
Finney, J.M. and Laird, C.: Strain localization in cyclic deformation of copper single crystals. Philos. Mag. 31, 339 (1975).Google Scholar
Wang, R., Mughrabi, H., McGovern, S., and Rapp, M.: Fatigue of copper single crystals in vacuum and in air I: Persistent slip bands and dislocation microstructures. Mater. Sci. Eng. 65, 219 (1984).Google Scholar
Basinski, Z.S. and Basinski, S.J.: Copper single crystal PSB morphology between 4.2 and 350 K. Acta Metall. 37, 3263 (1989).Google Scholar
Witmer, D.E., Farrington, G.C., and Laird, C.: Changes in strain localization behavior induced by fatigue in inert environments. Acta Metall. 35, 1895 (1987).Google Scholar
Grinberg, N.M.: The effect of vacuum on fatigue crack growth. Int. J. Fatigue 4, 83 (1982).Google Scholar
Plimpton, S.: Fast parallel algorithms for short-range molecular dynamics. J. Comput. Phys. 117, 1 (1995).Google Scholar
Plimpton, S., Thompson, A., Shan, R., Moore, S., and Kohlmeyer, A.: LAMMPS Molecular Dynamics Simulator, Available at: http://lammps.sandia.gov/.Google Scholar
Mortier, W.J., Ghosh, S.K., and Shankar, S.: Electronegativity-equalization method for the calculation of atomic charges in molecules. J. Am. Chem. Soc. 108, 4315 (1986).Google Scholar
Rappe, A.K. and Goddard, W.A.: Charge equilibration for molecular dynamics simulations. J. Phys. Chem. 95, 3358 (1991).CrossRefGoogle Scholar
Senftle, T.P., Hong, S., Islam, M.M., Kylasa, S.B., Zheng, Y., Shin, Y.K., Junkermeier, C., Engel-Herbert, R., Janik, M.J., Aktulga, H.M., Verstraelen, T., Grama, A., and van Duin, A.C.T.: The ReaxFF reactive force-field: Development, applications and future directions. npj Comput. Mater. 2, 15011 (2016).Google Scholar
Shan, T-R., Devine, B.D., Kemper, T.W., Sinnott, S.B., and Phillpot, S.R.: Charge-optimized many-body potential for the hafnium/hafnium oxide system. Phys. Rev. B 81, 125328 (2010).Google Scholar
Liang, T., Shan, T-R., Cheng, Y-T., Devine, B.D., Noordhoek, M., Li, Y., Lu, Z., Phillpot, S.R., and Sinnott, S.B.: Classical atomistic simulations of surfaces and heterogeneous interfaces with the charge-optimized many body (COMB) potentials. Mater. Sci. Eng., R 74, 255 (2013).Google Scholar
Assowe Dabar, O.: Study of the Corrosion Processes of Nickel by Molecular Dynamics with a ReaxFF Reactive Potential (French, Université de Bourgogne, France, 2012).Google Scholar
Psofogiannakis, G.M., McCleerey, J.F., Jaramillo, E., and van Duin, A.C.T.: ReaxFF reactive molecular dynamics simulation of the hydration of Cu-SSZ-13 zeolite and the formation of Cu dimers. J. Phys. Chem. C 119, 6678 (2015).Google Scholar
Van Duin, A.C.T., Bryantsev, V.S., Diallo, M.S., Goddard, W.A., Rahaman, O., Doren, D.J., Raymand, D., and Hermansson, K.: Development and validation of a ReaxFF reactive force field for Cu cation/water interactions and copper metal/metal oxide/metal hydroxide condensed phases. J. Phys. Chem. A 114, 9507 (2010).Google Scholar
Wang, J., Fisher, E.S., and Manghnzmi, M.H.: Elastic constants of nickel oxide. Chin. Phys. Lett. 8, 153 (1991).Google Scholar
Towler, M.D., Allan, N.L., Harrison, N.M., Saunders, V.R., Macrodt, W.C., and Aprà, E.: Ab initio study of MnO and NiO. Phys. Rev. B 50, 5041 (1994).Google Scholar
Dudarev, S.L., Botton, G.A., Savrasov, S.Y., Szotek, Z., Temmerman, W.M., and Sutton, A.: Electronic structure and elastic properties of strongly correlated metal oxides from first principles: LSDA + U, SIC-LSDA and EELS study of UO2 and NiO. Phys. Status Solidi A 166, 429 (1998).Google Scholar
Simmons, G. and Wang, H.: Single Crystal Elastic Constants and Calculated Aggregate Properties. A Handbook, 2nd ed. (The MIT Press, Cambridge, Massachusetts, USA, 1971).Google Scholar
Du Plessis, P.d.V., van Tonder, S.J., and Alberts, L.: Elastic constants of a NiO single crystal: I (magnetic transitions). J. Phys. C: Solid State Phys. 4, 1983 (1971).Google Scholar
Uchida, N. and Saito, S.: Elastic constants and acoustic absorption coefficients in MnO, CoO, and NiO single crystals at room temperature. J. Acoust. Soc. Am. 51, 1602 (1972).Google Scholar
Hallberg, J. and Hanson, R.C.: The elastic constants of cuprous oxide. Phys. Status Solidi B 42, 305 (1970).Google Scholar
Beg, M.M. and Shapiro, S.M.: Study of phonon dispersion relations in cuprous oxide by inelastic neutron scattering. Phys. Rev. B 13, 1728 (1976).Google Scholar
Etters, R.D. and Hardouin Duparc, O.: Character of the magnetic disorder in ε-and δ-phase O2 monolayers on graphite. Phys. Rev. B 32, 7600 (1985).Google Scholar
Hardouin Duparc, O. and Etters, R.D.: Thermodynamic behavior of the structures and magnetic order of O2 monolayers on graphite. J. Chem. Phys. 86, 1020 (1987).Google Scholar
Wiame, F., Maurice, V., and Marcus, P.: Initial stages of oxidation of Cu(111). Surf. Sci. 601, 1193 (2007).Google Scholar
Fehlner, F.P. and Mott, N.F.: Low-temperature oxidation. Oxid. Met. 2, 59 (1970).Google Scholar
Holloway, P.H. and Hudson, J.B.: Kinetics of the reaction of oxygen with clean nickel single crystal surfaces. Surf. Sci. 43, 123 (1974).Google Scholar
Smeenk, R.G., Tromp, R.M., Van Der Veen, J.F., and Saris, F.W.: A quantitative ion-scattering study of the Ni(110) surface during the early stages of oxidation. Surf. Sci. 95, 156 (1980).Google Scholar
Holloway, P.H.: Chemisorption and oxide formation on metals: Oxygen–nickel reaction. J. Vac. Sci. Technol. 18, 653 (1981).Google Scholar
Wood, E.A.: Vocabulary of Surface Crystallography. J. Appl. Phys. 35, 1306 (1964).Google Scholar
Davisson, C. and Germer, L.H.: Diffraction of electrons by a crystal of nickel. Phys. Rev. 30, 705 (1927).Google Scholar
Spitzer, A. and Lüth, H.: The adsorption of oxygen on copper surfaces. Surf. Sci. 118, 136 (1982).Google Scholar
Sueyoshi, T., Sasaki, T., and Iwasawa, Y.: Molecular and atomic adsorption states of oxygen on Cu(111) at 100–300 K. Surf. Sci. 365, 310 (1996).Google Scholar
Lou, L., Nordlander, P., and Hellsing, B.: Theoretical study of O2 dissociation on copper and nickel clusters. Surf. Sci. 320, 320 (1994).Google Scholar
Devine, B., Shan, T-R., Cheng, Y-T., McGaughey, A.J.H., Lee, M., Phillpot, S.R., and Sinnott, S.B.: Atomistic simulations of copper oxidation and Cu/Cu2O interfaces using charge-optimized many-body potentials. Phys. Rev. B 84, 125308 (2011).Google Scholar
Dubois, L.H.: Oxygen chemisorption and cuprous oxide formation on Cu(111): A high resolution EELS study. Surf. Sci. 119, 399 (1982).Google Scholar
Zhou, G. and Yang, J.C.: Temperature effects on the growth of oxide islands on Cu(110). Appl. Surf. Sci. 222, 357 (2004).Google Scholar
Volterra, V.: On the equilibrium of multiply connected elastic bodies (in French). Ann. Sci. École Norm. Supér. 24, 401 (1907).Google Scholar
Basinski, Z.S. and Basinski, S.J.: Fundamental aspects of low amplitude cyclic deformation in face-centred cubic crystals. Prog. Mater. Sci. 36, 89 (1992).Google Scholar
Mughrabi, H.: Cyclic slip irreversibilities and the evolution of fatigue damage. Metall. Mater. Trans. A 40, 1257 (2009).CrossRefGoogle Scholar
Mughrabi, H.: Fatigue, an everlasting materials problem—Still en vogue. Procedia Eng. 2, 3 (2010).Google Scholar