Hostname: page-component-745bb68f8f-kw2vx Total loading time: 0 Render date: 2025-01-24T14:36:49.788Z Has data issue: false hasContentIssue false

Modulation of MS2 virus adsorption on TiO2 semiconductor film by nitrogen doping

Published online by Cambridge University Press:  31 January 2011

Qi Li
Affiliation:
Department of Materials Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801
Wei Liang
Affiliation:
Department of Materials Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801
Jian Ku Shang*
Affiliation:
Department of Materials Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801
*
a)Address all corresopndence to this author. e-mail: [email protected]
Get access

Abstract

Nitrogen was doped into titanium dioxide film to alter its surface electrostatic properties, and subsequently modulate the interaction force between MS2 virus and semiconductor films for control of the adsorption behavior of MS2 on semiconductor surfaces. By combining atomic force microscopy (AFM) height profile and phase profile, adsorptions of MS2 virus on TiO2-based semiconductor surfaces were observed in solutions over a range of pH values. The adsorption behavior was shown to agree with the theoretical analysis of colloidal interactions.

Type
Articles
Copyright
Copyright © Materials Research Society 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Whaley, S.R., English, D.S., Hu, E.L., Barbara, P.F., Belcher, A.M.: Selection of peptides with semiconductor binding specificity for directed nanocrystal assembly. Nature 405, 665 2000CrossRefGoogle ScholarPubMed
2Ball, P.: It all falls into place. Nature 413, 667 2001CrossRefGoogle ScholarPubMed
3Mann, S., Shenton, W., Li, M., Connolly, S., Fitzmaurice, D.: Biologically programmed nanoparticle assembly. Adv. Mater. 12, 147 20003.0.CO;2-U>CrossRefGoogle Scholar
4Nygaard, S., Wendelbo, R., Brown, S.: Surface-specific zeolite-binding proteins. Adv. Mater. 14, 1853 2002CrossRefGoogle Scholar
5Mcmillan, R.A., Paavola, C.D., Howard, J., Chan, S.L., Zaluze, N.J., Trent, J.D.: Ordered nanoparticle arrays formed on engineered chaperonin protein templates. Nat. Mater. 1, 247 2002CrossRefGoogle ScholarPubMed
6Seeman, N.C.: DNA in a material world. Nature 421, 427 2003CrossRefGoogle Scholar
7Banerjee, I.A., Yu, L., Matsui, H.: Cu nanocrystal growth on peptide nanotubes by biomineralization: Size control of Cu nanocrystals by tuning peptide conformation. Proc. Natl. Acad. Sci. USA 100, 14678 2003CrossRefGoogle ScholarPubMed
8Douglas, T., Young, M.: Host–guest encapsulation of materials by assembled virus protein cages. Nature 393, 152 1998CrossRefGoogle Scholar
9Shenton, W., Douglas, T., Young, M., Stubbs, G., Mann, S.: Inorganic-organic nanotube composites from template mineralization of tobacco mosaic virus. Adv. Mater. 11, 253 19993.0.CO;2-7>CrossRefGoogle Scholar
10Wang, Q., Lin, T., Tang, L., Johnson, J.E., Finn, M.G.: Icosahedral virus particles as addressable nanoscale building blocks. Angew. Chem. Int. Ed. Engl. 41, 459 20023.0.CO;2-O>CrossRefGoogle ScholarPubMed
11Mao, C., Flynn, C.E., Hayhurst, A., Sweeney, R., Qi, J., Georgiou, G., Iverson, B., Belcher, A.M.: Viral assembly of oriented quantum dot nanowires. Proc. Natl. Acad. Sci. USA 100, 6946 2003CrossRefGoogle ScholarPubMed
12Lee, S.W., Mao, C., Flynn, C.E., Belcher, A.M.: Ordering of quantum dots using genetically engineered viruses. Science 296, 892 2002CrossRefGoogle ScholarPubMed
13Nam, K.T., Peelle, B.R., Lee, S.W., Belcher, A.M.: Genetically driven assembly of nanorings based on the M13 virus. Nano Lett. 4, 23 2004CrossRefGoogle Scholar
14Guthold, M., Matthews, G., Negishi, A., Taylor, R.M. II, Erie, D., Brooks, F.P. Jr., Superfine, R.: Quantitative manipulation of DNA and viruses with the nanomanipulator scanning force microscope. Surf. Interface Anal. 27, 437 19993.0.CO;2-N>CrossRefGoogle Scholar
15Lee, S.W., Wood, B.M., Belcher, A.M.: Chiral smectic C structures of virus-based films. Langmuir 19, 1592 2003CrossRefGoogle Scholar
16Plomp, M., Rice, M.K., Wagner, E.K., McPherson, A., Malkin, A.J.: Rapid visualization at high resolution of pathogens by atomic force microscopy. Am. J. Pathol. 160, 1959 2002CrossRefGoogle ScholarPubMed
17Engvall, E., Perlman, P.: Enzyme-linked immunosorbent assay (ELISA): quantitative assay of immunoglobulin G. Immunochemistry 8, 871 1971CrossRefGoogle ScholarPubMed
18Wu, M., Brown, W.L., Stockley, P.G.: Cell-specific delivery of bacteriophage-encapsidated ricin A chain. Bioconjug. Chem. 6, 587 1995CrossRefGoogle ScholarPubMed
19Brown, W.L., Mastico, R.A., Wu, M., Heal, K.G., Adams, C.J., Murray, J.B., Simpson, J.C., Lord, J.M., Taylor-Robinson, A.W., Stockley, P.G.: RNA bacteriophage capsid-mediated drug delivery and epitope presentation. Intervirology 45, 371 2002CrossRefGoogle ScholarPubMed
20Aas, P.A., Otterlei, M., Falnes, P.Ø., Vågbø, C.B., Skorpen, F., Akbari, M., Sundheim, O., Bjørås, M., Slupphaug, G., Seeberg, E., Krokan, H.E.: Human and bacterial oxidative demethylases repair alkylation damage in both RNA and DNA. Nature 421, 859 2003CrossRefGoogle ScholarPubMed
21Hooker, J.M., Kovacs, E.W., Francis, M.B.: Interior surface modification of bacteriophage MS2. J. Am. Chem. Soc. 126, 3718 2004CrossRefGoogle ScholarPubMed
22Valegard, K., Liljas, L., Fridborg, K., Unge, T.: The three-dimensional structure of the bacterial virus MS2. Nature 345, 36 1990CrossRefGoogle ScholarPubMed
23Valegard, K., Murray, J.B., Stockley, P.G., Stonehouse, N.J., Liljas, L.: Crystal structure of an RNA bacteriophage coat protein– operator complex. Nature 371, 623 1994CrossRefGoogle ScholarPubMed
24Penrod, S.L., Olson, T.M., Grant, S.B.: Deposition kinetics of two viruses in packed beds of quartz granular media. Langmuir 12, 5576 1996CrossRefGoogle Scholar
25Willett, R.L., Baldwin, K.W., West, K.W., Pfeiffer, L.N.: Differential adhesion of amino acids to inorganic surfaces. Proc. Natl. Acad. Sci. USA 102, 7817 2005CrossRefGoogle ScholarPubMed
26Dowd, S.E., Pillai, S.D., Wang, S., Corapcioglu, M.Y.: Delineating the specific influence of virus isoelectric point and size on virus adsorption and transport through sandy soils. Appl. Environ. Microbiol. 64, 405 1998CrossRefGoogle ScholarPubMed
27Lewis, J.A.: Colloidal processing of ceramics. J. Am. Ceram. Soc. 83, 2341 2000CrossRefGoogle Scholar
28Derjaguin, B., Landau, L.: Theory of stability of highly charged lyophobi sols and adhesion of highly charged particles in solutions of electrolytes. Acta Physicochim. URSS 14, 633 1941Google Scholar
29Verwey, E.J.W., Overbeek, J.Th.G.: Theory of Stability of Lyophobic Colloids Elsevier Amsterdam, The Netherlands 1948Google Scholar
30Hunter, R.J.Foundations of Colloid Science. Vol. 1, Oxford Univ. Press Inc. New York 1992Google Scholar
31Israelachvili, J.Intermolecular & Surface Forces. 2nd ed.Academic Press Limited San Diego, CA 1991Google Scholar
32Lozier, J., Kitis, M., Colvin, C.K., Kim, J-H., Mi, B.: B., and B.J. Mariñas: Microbial Removal and Integrity Monitoring of High-Pressure Membranes, (American Water Works Association Research Foundation and American Water Works Association, Denver, CO, 2003)Google Scholar
33Miyauchi, M., Ikezawa, A., Tobimatsu, H., Irie, H., Hashimoto, K.: Zeta potential and photocatalytic activity of nitrogen doped TiO2 thin films. Phys. Chem. Chem. Phys. 6, 865 2004CrossRefGoogle Scholar
34Yoko, T., Kamiya, K., Yuasa, A., Tanaka, K., Sakka, S.: Surface modification of a TiO2 film electrode prepared by the sol-gel method and its effect on photoelectrochemical behavior. J. Non-Cryst. Solids 100, 483 1998CrossRefGoogle Scholar
35Sene, J.J., Zeltner, W.A., Anderson, M.A.: Fundamental photoelectrocatalytic and electrophoretic mobility studies of TiO2 and V-doped TiO2 thin-film electrode materials. J. Phys. Chem. B 107, 1597 2003CrossRefGoogle Scholar