Hostname: page-component-78c5997874-j824f Total loading time: 0 Render date: 2024-11-05T12:09:22.157Z Has data issue: false hasContentIssue false

Modified method developed for contact-induced adhesion in indentation

Published online by Cambridge University Press:  31 January 2011

Pal Jen Wei
Affiliation:
Department of Mechanical Engineering, National Cheng Kung University, Tainan 701, Taiwan, Republic of China
Jen Fin Lin*
Affiliation:
Department of Mechanical Engineering, National Cheng Kung University, Tainan 701, Taiwan, Republic of China; Center for Micro/Nano Science and Technology, National Cheng Kung University, Tainan 701, Taiwan, Republic of China; and Institute of Nanotechnology and Microsystems Engineering, National Cheng Kung University Tainan 701, Taiwan, Republic of China
*
a) Address all correspondence to this author. e-mail: [email protected]
Get access

Abstract

A modified method for contact-induced adhesion on the elastic deformation contact between a rigid spherical indenter and a polydimethylsiloxane (PDMS) specimen is proposed in the present study. Adhesion due to van der Waals interactions was found to be minimal during loading processes. During the unloading process, the experimental load-displacement data revealed two-stage phenomena. The successive advancing contacts between the specimen and the indenter were considered to induce interfacial adhesion and resulted in elastic tension outside the Hertzian contact radius. A real-coded genetic algorithm (RGA) was applied to evaluate how adhesion energy varied with penetration depth.

Type
Articles
Copyright
Copyright © Materials Research Society 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Zhou, Y., Yang, C-S., Chen, J-A., Ding, G-F., Ding, W., Wang, L., Wang, M-J., Zhang, Y-M., and Zhang, T-H.: Measurement of Young's modulus and residual stress of copper film electroplated on silicon wafer. Thin Solid Films 460, 175 (2004).Google Scholar
2.Zhou, J. and Komvopoulos, K.: Surface and interface viscoelastic behaviors of thin polymer films investigated by nanoindentation. J. Appl. Phys. 100, 114329 (2006).Google Scholar
3.Delobelle, P., Guillon, O., Fribourg-Blanc, E., Soyer, C., Cattan, E., and Remiens, D.: True Young modulus of Pb(Zr,Ti)O-3 films measured by nanoindentation. Appl. Phys. Lett. 85, 5185 (2004).CrossRefGoogle Scholar
4.Tranchida, D., Piccarolo, S., Loos, J., and Alexeev, A.: Accurately evaluating Young's modulus of polymers through nanoindenta-tions: A phenomenological correction factor to the Oliver and Pharr procedure. Appl. Phys. Lett. 89, 171905 (2006).CrossRefGoogle Scholar
5.Lotters, J.C., Olthuis, W., Veltink, P.H., and Bergveld, P.: The mechanical properties of the rubber elastic polymer polydi-methylsiloxane for sensor applications. J. Micromech. Microeng. 7, 145 (1997).Google Scholar
6.Zhao, Y-P., Shi, X., and Li, W.J.: Effect of work of adhesion on nanoindentation. Rev. Adv. Mater. Sci. 5, 348 (2003).Google Scholar
7.Pokropivny, V.V., Skorokhod, V.V., and Pokropivny, A.V.: Adhesive phenomena at the α-Fe interface during nanoindentation, stretch and shock. Modell. Simul. Mater. Sci. Eng. 5, 579 (1997).CrossRefGoogle Scholar
8.Johnson, K.L., Kendall, K., and Roberts, A.D.: Surface energy and contact of elastic solids. Proc. R. Soc. London, Ser. A 324, 301 (1971).Google Scholar
9.Derjaguin, B.V., Muller, V.M., and Toporov, Y.P.: Effect of contact deformations on adhesion of particles., J.Colloid Interface Sci. 53, 314 (1975).CrossRefGoogle Scholar
10.Tabor, D.: Surface forces and surface interactions., J. Colloid Interface Sci. 58, 2 (1977).Google Scholar
11.Maugis, D.: Adhesion of spheres-The JKR-DMT transition using a Dugdale model., J. Colloid Interface Sci. 150, 243 (1992).Google Scholar
12.Hertz, H.: On the contact of elastic solids. J. Reine Angew. Math. 92, 156 (1881).Google Scholar
13.Piétrement, O. and Troyon, M.: General equations describing elastic indentation depth and normal contact stiffness versus load. J. Colloid Interface Sci. 226, 166 (2000).Google Scholar
14.Barthel, E.: On the description of the adhesive contact of spheres with arbitrary interaction potentials., J. Colloid Interface Sci. 200, 7 (1998).CrossRefGoogle Scholar
15.Brown, H.R.: Effects of chain pull-out on adhesion of elastomers. Macromolecules 26, 1666 (1993).Google Scholar
16.Raphael, E. and DeGennes, P.G.: Rubber-rubber adhesion with connector molecules., J. Phys. Chem. 96, 4002 (1992).CrossRefGoogle Scholar
17.Ghatak, A., Vorvolakos, K., She, H., Malotky, D.L., and Chaudhury, M.K.: Interfacial rate processes in adhesion and friction. J. Phys. Chem. B 104, 4018 (2000).CrossRefGoogle Scholar
18.Kendall, K.: Peel adhesion of solid films: Surface and bulk effects. J. Adhes. 5, 179 (1973).CrossRefGoogle Scholar
19.Clarson, S.J. and Semlyen, J.A.: Siloxane Polymers (Prentice-Hall, Englewood Cliffs, NJ, 1993).Google Scholar
20.Lotters, J.C., Olthuis, W., Veltink, P.H., and Bergveld, P.: Polydi-methylsiloxane as an elastic material applied in a capacitive accelerometer. J. Micromech. Microeng. 6, 52 (1996).CrossRefGoogle Scholar
21.Sharp, K.G., Blackman, G.S., Glassmaker, N.J., Jagota, A., and Hui, C.Y.: Effect of stamp deformation on the quality of microcontact printing: Theory and experiment. Langmuir 20, 6430 (2004).Google Scholar
22.Gillies, G. and Prestidge, C.A.: Interaction forces, deformation and nano-rheology of emulsion droplets as determined by colloid probe AFM. Adv. Colloid Interface Sci. 108–109, 197 (2004).Google Scholar
23.Sirghi, L. and Rossi, F.: Adhesion and elasticity in nanoscale indentation. Appl. Phys. Lett. 89, 243118 (2006).Google Scholar
24.Gupta, S., Carrillo, F., Li, C., Pruitt, L., and Puttlitz, C.: Adhesive forces significantly affect elastic modulus determination of soft polymeric materials in nanoindentation. Mater. Lett. 61, 448 (2007).Google Scholar
25.Lim, Y.Y. and Chaudhri, M.M.: Indentation of elastic solids with a rigid Vickers pyramidal indenter. Mech. Mater. 38, 1213 (2006).Google Scholar
26.Cao, Y., Yang, D., and Soboyejoy, W.: Nanoindentation method for determining the initial contact and adhesion characteristics of soft polydimethylsiloxane. J. Mater. Res. 20, 2004 (2005).Google Scholar
27.Carrillo, F., Gupta, S., Balooch, M., Marshall, S.J., Marshall, G.W., Pruitt, L., and Puttlitz, C.M.: Nanoindentation of polydimethylsiloxane elastomers: Effect of crosslinking, work of adhesion, and fluid environment on elastic modulus. J. Mater. Res. 20, 2820 (2005).CrossRefGoogle Scholar
28.Johnson, K.L.: Contact Mechanics (Cambridge University Press, Cambridge, UK, 1987).Google Scholar
29.Livermore, C. and Voldman, J.: Material properties database. http://www.mit.edu/~6.777/matprops/matprops.htm (2005).Google Scholar
30.Rivlin, R.S. and Saunders, D.W.: Large elastic deformations of isotropic materials. VII. Experiments on the deformation of rubber. Philos. Trans. R. Soc. London, Ser. A 243, 251 (1951).Google Scholar
31.Mooney, M.: A theory of large elastic deformation. J. Appl. Phys. 11. 582 (1940).Google Scholar
32.Yu, Y.S. and Zhao, Y.P.: Deformation of PDMS membrane and microcantilever by a water droplet: Comparison between Mooney-Rivlin and linear elastic constitutive models. J. Colloid Interface Sci. 332, 467 (2009).CrossRefGoogle ScholarPubMed
33.Huang, R.C., and Anand, L.: Non-linear mechanical behavior of the elastomer polydimethylsiloxane (PDMS) used in the manufacture of microfluidic devices. (unpublished).Google Scholar
34.Barenblatt, G.I.: The mathematical theory of equilibrium of cracks in brittle fracture. Adv. Appl. Mech. 7, 55 (1962).Google Scholar
35.Dugdale, D.S.: Yielding of sheets containing slits. J. Mech. Phys. Solids 8, 100 (1960).CrossRefGoogle Scholar
36.Johnson, K.L. and Greenwood, J.A.: Adhesion map for the contact of elastic spheres. J. Colloid Interface Sci. 192, 326 (1997).Google Scholar
37.Shi, X. and Zhao, Y-P.: Comparison of various adhesion contact theories and the influence of dimensionless load parameter. J. Adhes. Sci. Technol. 18, 55 (2004).Google Scholar
38.Goldberg, D.E.: Genetic Algorithms in Search, Optimization and Machine Learning (Addison-Wesley Professional, Reading, MA, 1989).Google Scholar
39.Haupt, R.L. and Haupt, S.E.: Practical Genetic Algorithms (Wiley Interscience, New York, 1998).Google Scholar
40.Buchko, C.J., Slattery, M.J., Kozloff, K.M., and Martin, D.C.: Mechanical properties of biocompatible protein polymer thin films. J. Mater. Res. 15, 231 (2000).CrossRefGoogle Scholar
41.Bes, L., Huan, K., Khoshdel, E., Lowe, M.J., McConville, C.F., and Haddleton, D.M.: Poly(methylmethacrylate-dimethylsiloxane) triblock copolymers synthesized by transition metal mediated living radical polymerization: Bulk and surface characterization. Eur. Polym. J. 39, 5 (2003).Google Scholar
42.Bietsch, A. and Michel, B.: Conformal contact and pattern stability of stamps used for soft lithography. J. Appl. Phys. 88, 4310 (2000).CrossRefGoogle Scholar