Hostname: page-component-745bb68f8f-g4j75 Total loading time: 0 Render date: 2025-01-11T05:49:13.011Z Has data issue: false hasContentIssue false

Modeling of the self trapping of helium and the trap mutation in tungsten using DFT and empirical potentials based on DFT

Published online by Cambridge University Press:  29 October 2014

J. Boisse
Affiliation:
Unité Matériaux et Transformations, UMET, UMR 8207, Université de Lille 1, Villeneuve d’Ascq F-59655, France; and Laboratoire d'Energétique et de Mécanique Théorique et Appliquée, LEMTA, UMR 7563, Université de Lorraine, Vandoeuvre-lès-Nancy F-54504, France
A. De Backer
Affiliation:
Unité Matériaux et Transformations, UMET, UMR 8207, Université de Lille 1, Villeneuve d’Ascq F-59655, France; and CCFE, Culham Science Centre, Abingdon, Oxon OX14 3DB, United Kingdom
C. Domain
Affiliation:
Unité Matériaux et Transformations, UMET, UMR 8207, Université de Lille 1, Villeneuve d’Ascq F-59655, France; and EDF-R&D, Département MMC, Les renardières, Moret sur Loing F-77250, France
C.S. Becquart*
Affiliation:
Unité Matériaux et Transformations, UMET, UMR 8207, Université de Lille 1, Villeneuve d’Ascq F-59655, France
*
a)Address all correspondence to this author. e-mail: [email protected]
Get access

Abstract

Density functional theory calculations and molecular dynamics with a recently developed potential for W–He were used to evaluate the thermal stability of helium-vacancy clusters (nHe.mv) as well as pure interstitial helium clusters in tungsten. The stability of such objects results from a competitive process between thermal emission of vacancies, self interstitial atoms (SIAs), and helium, depending on the helium-to-vacancy ratio in mixed clusters or helium number in pure interstitial helium clusters. We investigated in particular the ground state configurations as well as the activation barriers of self trapping and trap mutation, i.e., the emission of one SIA along with the creation of one vacancy from a vacancy-helium or pure helium object.

Type
Invited Feature Papers
Copyright
Copyright © Materials Research Society 2014 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

This paper has been selected as an Invited Feature Paper.

References

REFERENCES

Becquart, C.S. and Domain, C.: The migration energy of He in W revisited by Ab initio calculations. Phys. Rev. Lett. 97, 196402 (2006).CrossRefGoogle Scholar
Soltan, A.S., Vassen, R., and Jung, P.: Migration and immobilization of He and H in gold and tungsten at low temperatures. J. Appl. Phys. 70, 793 (1991).CrossRefGoogle Scholar
Trinkaus, H. and Singh, B.N.: Helium accumulation in metals during irradiation – where do we stand?. J. Nucl. Mater. 323, 229 (2003).CrossRefGoogle Scholar
Dai, Y., Odette, G.R., and Yamamoto, T.: The effects of helium in irradiated structural alloys. Compr. Nucl. Mater. 1, 141 (2012).CrossRefGoogle Scholar
Nordlund, K., Bjorkas, C., Ahlgren, T., Lasa, A., and Sand, A.E.: Multiscale modelling of plasma–wall interactions in fusion reactor conditions. J. Phys. D: Appl. Phys. 47, 224018 (2014).CrossRefGoogle Scholar
Trinkaus, H.: Energetics and formation kinetics of helium bubbles in metals. Radiat. Eff. 78, 189 (1983).CrossRefGoogle Scholar
Picraux, S.T.: Defect trapping of gas atoms in metals. Nucl. Instrum. Methods 182183, 413 (1981).CrossRefGoogle Scholar
Kornelsen, E.V.: Entrapment of helium ions at (100) and (110) tungsten surfaces. Can. J. Phys. 48, 2812 (1970).CrossRefGoogle Scholar
Van Veen, A., Caspers, L.M., Kornelsen, E.V., Pastenau, R., Van Gorkum, A., and Warnaar, A.: Vacancy creation by helium trapping at substitutional krypton in tungsten. Phys. Status Solidi 40, 235 (1977).CrossRefGoogle Scholar
Wilson, W.D.: Theory of small clusters of helium in metals. Radiat. Eff. 78, 11 (1983).CrossRefGoogle Scholar
Henriksson, K.O.E., Nordlund, K., Krasheninnikov, A., and Keinonen, J.: Difference in formation of hydrogen and helium clusters in tungsten. Appl. Phys. Lett. 87, 163113 (2005).CrossRefGoogle Scholar
Becquart, C.S. and Domain, C.: A density functional theory assessment of the clustering behaviour He and H in tungsten. J. Nucl. Mater. 386388, 109 (2009).CrossRefGoogle Scholar
Evans, J.H.: An interbubble fracture mechanism of blister formation on helium-irradiated metals. J. Nucl. Mater. 68, 129 (1977).CrossRefGoogle Scholar
Evans, J.H.: The role of implanted gas and lateral stress in blister formation mechanisms. J. Nucl. Mater. 7677, 228 (1978).CrossRefGoogle Scholar
Greenwood, G.W., Foreman, A.J.E., and Rimmer, D.E.: The role of vacancies and dislocations in the nucleation and growth of gas bubbles in irradiated fissile materials. J. Nucl. Mater. 4, 305 (1959).CrossRefGoogle Scholar
Wampler, W.R., Schober, T., and Lengeler, B.: Precipitation and trapping of hydrogen in copper. Philos. Mag. 34, 129 (1976).CrossRefGoogle Scholar
Evans, J.H., Van Veen, A., and Caspers, L.M.: Direct evidence for He bubble growth in Mo by the mechanism of loop punching. Scr. Metall. 15, 323 (1981).CrossRefGoogle Scholar
Nicholson, R.J.K. and Walls, J.M.: FIM studies of the lattice damage in tungsten following low-energy helium ion bombardment. J. Nucl. Mater. 7677, 251 (1978).CrossRefGoogle Scholar
Abd El Keriem, M.S., van der Werf, D.P., and Pleiter, F.: He-vacancy interaction in tungsten. Phys. Rev. B 47, 14771 (1993).CrossRefGoogle Scholar
Iwakiri, H., Yasunaga, K., Morishita, K., and Yoshida, N.: Microstructure evolution in tungsten during low-energy helium ion irradiation. J. Nucl. Mater. 283287, 1134 (2000).CrossRefGoogle Scholar
Wilson, W.D., Bisson, C.L., and Baskes, M.I.: Self-trapping of helium in metals. Phys. Rev. B 24, 5616 (1981).CrossRefGoogle Scholar
Henriksson, K.O.E., Nordlund, K., and Keinonen, J.: Molecular dynamics simulations of He cluster formation in tungsten. Nucl. Instrum. Methods Phys. Res., B 244, 377 (2006).CrossRefGoogle Scholar
Gao, F., Huiqiu Deng, , Heinisch, H.L., and Kurtz, R.J.: A new Fe-He interatomic potential based on ab initio calculations in α-Fe. J. Nucl. Mater. 418, 115 (2011).CrossRefGoogle Scholar
Stoller, R.E., Golubov, S.I., Kamenski, P.J., Seletskaia, T., and Osetsky, Yu.N.: Implementation of a new Fe–He three-body interatomic potential for molecular dynamics simulations. Philos. Mag. 90, 923 (2010).CrossRefGoogle Scholar
Caro, A., Hetherly, J., Stukowski, A., Caro, M., Martinez, E., Srivilliputhur, S., Zepeda-Ruiz, L., and Nastasi, M.: Properties of helium bubbles in Fe and FeCr alloys. J. Nucl. Mater. 418, 261 (2011).CrossRefGoogle Scholar
Hu, L., Hammond, K.D., Wirth, B.D., and Maroudas, D.: Interactions of mobile helium clusters with surfaces and grain boundaries of plasma-exposed tungsten. J. Appl. Phys. 115, 173512 (2014).CrossRefGoogle Scholar
Stewart, D.M., Osetsky, Yu.N., and Stoller, R.E.: Atomistic studies of formation and diffusion of helium clusters and bubbles in BCC iron. J. Nucl. Mater. 417, 1110 (2011).CrossRefGoogle Scholar
Perez, D., Vogel, T., and Uberuaga, B.P.: Diffusion and transformation kinetics of small helium clusters in bulk tungsten. arXiv:1406.6418v1[cond-mat.mtrl-sci] 25 Jun 2014.CrossRefGoogle Scholar
Juslin, N. and Wirth, B.D.: Interatomic potentials for simulation of He bubble formation in W. J. Nucl. Mater. 432, 61 (2013).CrossRefGoogle Scholar
Kresse, G. and Hafner, J.: Ab initio molecular dynamics for liquid metals. Phys. Rev. B 47, 558 (1993).CrossRefGoogle ScholarPubMed
Kresse, G. and Joubert, D.: From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B 59, 1758 (1999).CrossRefGoogle Scholar
Perdew, J.P. and Wang, Y.: Accurate and simple analytic representation of the electron-gas correlation energy. Phys. Rev. B 45, 13244 (1992).CrossRefGoogle ScholarPubMed
Monkhorst, H.J. and Pack, J.D.: Special points for Brillouin-zone integrations. Phys. Rev. B 13, 5188 (1976).CrossRefGoogle Scholar
Plimpton, S.J.: Fast parallel algorithms for short-range molecular dynamics. J. Comput. Phys. 117, 1 (1995).CrossRefGoogle Scholar
Ackland, G.J. and Thetford, R.: An improved N-body semi-empirical model for body-centred cubic transition metals. Philos. Mag. A 56, 15 (1995).CrossRefGoogle Scholar
Beck, D.E.: A new interatomic function for helium. Mol. Phys. 14, 311 (1968).CrossRefGoogle Scholar
Morishita, K., Sugano, R., and Wirth, B.D.: Thermal stability of helium–vacancy clusters in iron. Nucl. Instrum. Methods Phys. Res., B 202, 76 (2003).CrossRefGoogle Scholar
Fu, C.C. and Willaime, F.: Ab initio study of helium in α-Fe: Dissolution, migration, and clustering with vacancies. Phys. Rev. B 72, 064117 (2005).CrossRefGoogle Scholar
Fu, C.C. and Willaime, F.: Interaction between helium and self-defects in alpha-iron from first principles. J. Nucl. Mater. 367370, 244 (2007).CrossRefGoogle Scholar
Lucas, G. and Schaublin, R.: Stability of helium bubbles in alpha-iron: A molecular dynamics study. J. Nucl. Mater. 386388, 360 (2009).CrossRefGoogle Scholar
Jourdan, T. and Crocombette, J-P.: A variable-gap model for calculating free energies of helium bubbles in metals. J. Nucl. Mater. 418, 98 (2011).CrossRefGoogle Scholar
De Backer, A., Lhuillier, P.E., Becquart, C.S., and Barthe, M.F.: Modelling of the implantation and the annealing stages of 800 keV 3He implanted tungsten: Formation of nanovoids in the near surface region. J. Nucl. Mater. 429, 78 (2012).CrossRefGoogle Scholar
Fedorov, A.V.: Evolution of point defect clusters during ion irradiation and thermal annealing. Ph.D. Thesis, University of Delft, Delft, Netherlands, 2000, p. 25.Google Scholar
Morishita, K., Sugano, R., and Wirth, B.D.: MD and KMC modeling of the growth and shrinkage mechanisms of helium–vacancy clusters in Fe. J. Nucl. Mater. 323, 243 (2003).CrossRefGoogle Scholar
Kornelsen, E.V. and Van Gorkum, A.A.: A study of bubble nucleation in tungsten using thermal desorption spectrometry: Clusters of 2 to 100 helium atoms. J. Nucl. Mater. 92, 79 (1980).CrossRefGoogle Scholar
Nguyen-Manh, D. and Dudarev, S.L.: Trapping of He clusters by inert-gas impurities in tungsten: First-principles predictions and experimental validation. Nucl. Instrum. Methods Phys. Res., B, submitted (http://arxiv.org/ftp/arxiv/papers/1408/1408.0630.pdf).Google Scholar
Becquart, C.S. and Domain, C.: Ab initio calculations about intrinsic point defects and He in W. Nucl. Instrum. Methods B 255, 23 (2007).CrossRefGoogle Scholar
Henkelman, G. and Jonsson, H.: Improved tangent estimate in the nudged elastic band method for finding minimum energy paths and saddle points. J. Chem. Phys. 113, 9978 (2000).CrossRefGoogle Scholar
Henkelman, G., Uberuaga, B.P., and Jonsson, H.: Climbing image nudged elastic band method for finding saddle points and minimum energy paths. J. Chem. Phys. 113, 9901 (2000).CrossRefGoogle Scholar
Nakano, A.: A space-time-ensemble parallel nudged elastic band algorithm for molecular kinetics simulation. Comput. Phys. Commun. 178, 280 (2008).CrossRefGoogle Scholar
Bitzek, E., Koskinen, P., Gahler, F., Moseler, M., and Gumbsch, P.: Structural relaxation made simple. Phys. Rev. Lett. 97, 170201 (2006).CrossRefGoogle ScholarPubMed
Boisse, J., Domain, C., and Becquart, C.S.: Modelling self trapping and trap mutation in tungsten using DFT and molecular dynamics with an empirical potential based on DFT. J. Nucl. Mater. 455, 10 (2014).CrossRefGoogle Scholar